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7 Statistial mehanis of omplex networksBartªomiej WaªawFebruary 1, 2008
AbstratThe siene of omplex networks is a new interdisiplinary branh of siene whih has arisen reentlyon the interfae of physis, biology, soial and omputer sienes, and others. Its main goal is to disovergeneral laws governing the reation and growth as well as proesses taking plae on networks, like e.g. theInternet, transportation or neural networks. It turned out that most real-world networks annot be simplyredued to a ompound of some individual omponents. Fortunately, the statistial mehanis, being oneof pillars of modern physis, provides us with a very powerful set of tools and methods for desribing andunderstanding these systems. In this thesis, we would like to present a onsistent approah to omplexnetworks based on statistial mehanis, with the entral role played by the onept of statistial ensembleof networks. We show how to onstrut suh a theory and present some pratial problems where it anbe applied. Among them, we pay attention to the problem of �nite-size orretions and the dynamis ofa simple model of mass transport on networks. In partiular, we alulate the uto� funtion for �nitegrowing networks in the generalized Barabási-Albert model and show how the maximal degree observedin suh a network depends on its size and on the exponent γ in the power-law degree distribution. Weshow that this strutural uto� is gaussian only for γ = 3, and is never exponential for 2 < γ < 4. Inparallel, we present numerial results for equilibrated networks, that is networks obtained in a sort of�thermalization� (randomization) proess. We disuss also similarities and di�erenes between growingand equilibrated networks. Conerning dynamis on networks, we study so alled zero-range proessbeing a system of partiles hopping between sites of a network. We disuss known results for its statiand dynamial properties on homogeneous networks, where all nodes have the same degrees, and derivenew preditions for inhomogeneous graphs. We show that when the density of partiles passes a ertainthreshold, a ondensate emerges at the most inhomogeneous node. Its life-time grows exponentially withthe size of the system, ontrary to homogeneous graphs where it grows only like a power law. We �ndalso a speial type of an inhomogeneous network, for whih the average distribution of balls is sale-freeat the ritial point.
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PrefaeThis is a slightly modi�ed text of the PhD thesis written as a part of the author's PhD studies in theoretialphysis under the supervision of Prof. Z. Burda, and defended on April 5th, 2007, at the Faultyof Physis, Astronomy and Applied Computer Siene, Jagellonian University in Craow, Poland. Inomparison to the o�ially aepted dotoral dissertation, available from Jagellonian University Library,this version has been hanged aording to some ritial remarks of referees and other people who read itbefore and after the defense. In partiular, some typos and errors in formulas have been orreted, andsome referenes added or updated. There are also some minor hanges. For instane, in the original textwe used the word �homogeneous� to refer to a ertain type of networks. We replaed it here by the word�equilibrated� whih, as we realized, better relfets the struture of these networks and does not lead toa onfusion with another, ommonly aepted meaning. The ontents is, however, almost unhanged, sois the order of all hapters, setions et.
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Chapter 1Introdution1.1 Siene of omplex networksWe live in the world dominated by networks, either in tehnologial or soial sense. Who an nowimagine our existene without eletri power transmission lines, organized in a kind of network withnodes being power plants or transformer substations, or without the Internet, the most powerful mediumof the 21th entury? In fat, networks surround us. We ourselves are also a part of a huge networkof interpersonal ontats, where ideas or diseases an spread. Highways, subways, air tra� as well assienti� ollaborations or sexual ontats' networks are just a few further examples. Some of them are realphysial networks (the Internet), some of them desribe non-physial relations between objets (the WorldWide Web), being de�ned in some abstrat spae. During the last deade, networks beame a subjet ofinterest of sientists who want to disover general laws governing their formation and growth. It is a greatsuess that despite an enormous variety of networks and essential di�erenes in their physial struture,it is possible to �nd suh laws, applying to the majority of real-world networks. The most importantobservation is that these networks are omplex, what means that their properties annot be simplyredued to a ompound of individual omponents. Instead, a new quality emerges when many objetsare linked together forming a network. Therefore, the redutionism - a powerful tool of physis - failswhen one tries to examine omplex networks. Fortunately, one branh of physis, namely the statistialmehanis, provides us with an ideal set of tools, methods and ideas for desribing and understandingthese sophistiated systems. The appliation of these ideas to omplex networks unovers unexpetedonnetions to other areas of physis, as for instane to perolation or Bose-Einstein ondensation.In reent years, many properties of real-world networks have been desribed. Many models have beenproposed. As a result, a new inter-disiplinary siene, the siene of omplex networks, has emerged onthe interfae of physis, hemistry, biology, omputer siene and other disiplines. It is not the intentionof author to review all important results of the siene of omplex network in this short introdutoryhapter. For a review, we refer the reader to exellent papers [1, 2, 3℄, or to a newer one [4℄ presentingalso some reent developments in the �eld. However, to give a better omprehension of results presentedin this thesis and to make it self-ontained we shall desribe some ideas whih are espeially important forour purposes. So in the next setion of this hapter we shall disuss some basi onepts of graph theory,whih provides a natural framework for desription of networks. Then in the subsequent setion we shallreall the empirial �ndings on real-world networks whih have motivated the outbreak of interest in the�eld and then the rapid development of the siene of omplex networks in reent years. The explanationof the observed real-world properties is still the main objetive of many sienti� publiations. In thelast setion of this hapter we shall brie�y disuss the aim and the sope of the thesis.1.2 Graphs as models of networksThe material presented in this setion is intended to give the reader a brief introdution to the notationand some basi onepts developed by mathematiians in graph theory and then widely aepted by theommunity of omplex networks. All the de�nitions given here and also many others an be found forexample in the book [5℄. The reader familiar with graph theory may skip this setion.It is probably a trivial statement that a network an be represented as a graph, a mathematial objetonsisting of a set of nodes (alled also verties or sites) and a set of edges (links), whih are related byinidene relations. The nodes are joined by edges and the whole objet is usually represented graphially1
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Figure 1.1: Left: an example of an undireted pseudograph with seven nodes and eight edges. The nodesare labeled for onveniene. The node 7 is disonneted from the main body. The node 3 has a loop that isa self-onneting link. There is a double-link between the nodes 4 and 5. If the graph were simple, it wouldhave neither multiple- nor self-onnetions. The degrees of all nodes are 1, 3, 5, 4, 2, 1, 0, respetively. Inaddition, there is a triangle on the nodes 2, 3, 4. Right: an example of direted pseudograph with
N = 6, L = 10.as in Fig. 1.1. For eah edge the inidene relation says whih nodes are its endpoints. In the thesis weshall denote the total number of nodes and links in the graph by N and L, respetively. While referringto graph's size we shall usually mean the number of nodes. Nodes shall be denoted by small Latin letters
i, j, . . . . For simple graphs (see below), eah link is uniquely determined by a pair (i, j) of nodes beingits endpoints.For many purposes it is onvenient to di�erentiate between a direted graph, where every link i → jpoints only in one diretion, and an undireted graph for whih links do not have orientation. In Fig. 1.1we show examples of an undireted and a direted graph. Not every edge must onnet distint verties.An edge whih has two idential end-points is alled a loop or a self-onnetion. If two nodes areonneted by more than one link, the orresponding links are alled a multiple-onnetion or multiple-links. One is often interested in graphs without self- and multiple-onnetions, whih are alled simplegraphs or sometimes Mayer graphs, in ontrast to graphs with self- or multiple-onnetions whih arealled pseudographs or degenerate graphs. In the ourse of this work we will see however that in somerespets pseudographs are more onvenient for analytial treatment. A graph is fully desribed by itsadjaeny matrix A, whose entries Aij give the number of edges between nodes i, j. In this thesis we shallmainly onsider undireted graphs, for whih A is symmetri: Aij = Aji. Beause eah self-onnetionan be viewed as two links: one going out and one going in, it is onvenient to de�ne diagonal elementsof A to be equal to twie the number of loops inident with the node: Aii = 0, 2, 4, . . . . Alternativelythe fator of two for the diagonal elements an be attributed to the fat that eah loop is inident withthe vertex two times. Of ourse for simple graphs, all diagonal elements vanish: Aii = 0 and o�-diagonal
Aij are either zero or one.The most important loal quantity haraterizing a graph is node degree. The degree ki of node i isjust the number of links inident with the node: ki =

∑

j Aij . In ase of direted graphs one an de�nethe out- and in- degree separately, for outgoing and inoming links. For a simple undireted graph, thenode degree is equal to the number of nearest neighbors of the given node, that is nodes linked to it byan edge. The average degree k̄ of a graph is the average number of links per one node, that is k̄ = 2L/N ,beause eah link is ounted twie in the sum ∑

i ki = 2L. We shall use the notation k̄ when N,L are�xed, as for instane for the given network, or 〈k〉 when N or L may �utuate, as for instane for networksin the given statistial ensemble.A graph is said to be dense if the average degree is of order O(N) for N → ∞ or to be sparse if k̄approahes a onstant in this limit. A speial example of a dense graph is a omplete graph for whihevery pair of nodes is onneted by an edge, and thus L = N(N − 1)/2 and k̄ = N − 1, and of a sparsegraph is an empty graph with L = 0 and k̄ = 0. There are more speial graphs having their own names,some of whih will be mentioned in the next hapters.A subgraph is a graph de�ned on a subset of nodes whih are onneted by links preserving theinidene relation of the whole graph. The simplest subgraphs are a line (a single edge joining two nodes)or a triangle: three nodes joined together by three links, see Fig. 1.1. Small subgraphs are alled motifsin the language of omplex networks and will be disussed later.A path joining nodes i1 and in is a set of all nodes i1, . . . , in, where all intermediate nodes are distintand every pair ik, ik+1 is onneted by a link. In other words, it is a walk whih starts from i1, ends2
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��Figure 1.2: A tree graph with N = 8 nodes and L = 7 edges. Note that for any tree L = N − 1.in in and goes along links through the network, visiting eah node no more than one. The length of apath is just its number of links. A shortest path (there may be more than one) between a pair of nodesis alled geodesi path, and the length of this path is alled geodesi distane. The longest geodesi fromall possible paths is alled a diameter of graph. The average geodesi distane is sometimes also alleddiameter, but stritly speaking it is quite a distint quantity. In this paper we shall however use thelatter de�nition sine it is often muh simpler to alulate, and moreover for graphs representing omplexnetworks these two quantities are strongly orrelated. A graph is said to be onneted if every two nodesan be onneted by a path. Eah subgraph built on all verties whih an be onneted by a path isalled onneted omponent, or just omponent, of the graph. When the size of a omponent sales as

O(N) it is alled a giant omponent. The graph on the left-hand side of Fig. 1.1 has two omponents:one has six nodes and the other only one, namely the node 7.A lose path is alled yle. The simplest yle is the triangle graph. A onneted graph with noyles is alled tree (Fig. 1.2). Trees play an important role beause on the one hand many models ofomplex networks an be exatly solved for trees and on the other hand some important lasses of graphsloally look like trees.1.3 Properties of real-world networksAll de�nitions presented in the previous setion have been developed by mathematiians long before thesiene of omplex networks reeived its name and beame popular between sientists working in di�erentdisiplines. In this setion we shall present some of new ideas whih have emerged reently, mostly in thelast deade, as a result of empirial studies of real-world networks. Some of them have been introduednot as well-de�ned mathematial onepts but rather as �operative� de�nitions whih aptured interestingproperties of investigated networks.Sine the works of Milgram, Albert, Barabási, Watts, Strogatz, and many others, three onepts haveoupied an important plae in the siene of omplex networks. These are power-law (or more generally:heavy tailed) degree distributions, the onept of small-world and the lustering. We shall disuss themshortly and desribe how they apply to some real-world networks. All quantities and de�nitions shall begiven for undireted networks if it is not stated otherwise.Degree distribution. Like we said, node's degree is the number of links onneted to that node.Let us de�ne now the probability Π(k) that a randomly hosen node has exatly k links. Π(k) is alledthe degree distribution and an be obtained for any given network by making a histogram of the degreesfor all nodes. By de�nition, the degree distribution is normalized: ∑k Π(k) = 1 and its mean ∑k kΠ(k)equals to the average degree k̄. Investigations of real networks have led to a surprising result that manyof them have a power-law tail in the degree distribution:
Π(k) ∼ k−γ , (1.1)for intermediate values of 1 ≪ k ≪ N where N is the number of nodes in the network1. The valueof γ is typially between 2 and 4. This di�ers ruially from what one an imagine either for purelyrandom networks, or for regular grids like square or ubi latties. In the ase of regular latties, alldegrees are the same, so Π(k) = δk,k̄, while for random graphs one an argue that sine edges are plaedrandomly, the distribution Π(k) should be lose to a Poissonian one entered around k̄. The networkwith a power-law degree distribution is alled sale-free network (S-F), to emphasize the fat that thereis no typial sale in the power-law desribing the tail of the node degree distribution. Many models havebeen proposed to explain this feature, some of them will be presented later.Another quantity related to degrees is a two-point funtion ǫ(k, q) giving the probability that arandomly hosen edge joins two nodes of degrees k and q. The values ǫ(k, q) form a symmetri matrix:1For k of order N there is always some orretion, see the next hapter.3
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A = 0Figure 1.3: The assortativity A of the network and the average degree of nearest neighbors k̄nn(k). Foran unorrelated network, the assortativity is zero and k̄nn(k) is a horizontal line. For orrelated networks,two senarios are possible: either A < 0 if the network is disassortative, or A > 0 if it is assortative.
ǫ(k, q) = ǫ(q, k). The funtion has the following properties:

∑

k≤q

ǫ(k, q) = 1, (1.2)
∑

q

ǫ(k, q) =
∑

q

ǫ(q, k) = kΠ(k)/k̄. (1.3)The last equality beomes obvious when one realizes that the sum over q gives the probability that arandomly hosen edge inidents on a vertex with degree k. But the fration of suh edges is just kΠ(k)and the division over k̄ gives the orret probabilisti interpretation. If there were no orrelations, theprobability ǫ(k, q) would fatorize:
ǫr(k, q) =

kΠ(k) qΠ(q)

k̄2
, (1.4)but for almost all networks ǫ(k, q) 6= ǫr(k, q). The two-point funtion is, however, not onvenient forexamining degree-degree orrelations, therefore another alternative quantities based on ǫ(k, q) have beenintrodued, as for instane an average degree k̄nn(k) of nearest neighbors of a node with degree k. It anbe expressed through the two-point orrelations as follows:

k̄nn(k) =
k̄

kΠ(k)

∑

q

q ǫ(k, q). (1.5)In Fig. 1.3 we sketh three possible behaviors of the orrelations in the network, studied by means of
k̄nn(k). When this quantity grows with k, it means that the higher is degree of a node, the higher isaverage degree of its neighbors. In order to desribe this behavior one uses the term �assortativity� whihis borrowed from soial sienes. If k̄nn(k) dereases with k, the network is said to be disassortative.One an easily show that in ase of unorrelated degrees (1.4), the average degree of nearest neighbors isonstant (horizontal line in Fig. 1.3). One an go further and redue assortativity to a single oe�ient[6℄:

A =
Trǫ− Trǫr
1 − Trǫr . (1.6)This quantity is equal 1 for a totally assortative network: ǫ(k, k) > 0, ǫ(k, q) = 0 for k 6= q, and is negativefor disassortative networks. In the paper [7℄ a slightly di�erent quantity, namely the Pearson orrelationoe�ient, was measured for real networks. It was found that arti�ial networks like the WWW orthe Internet are mostly disassortative, while the itation network or other networks desribing relationsbetween human beings are rather assortative.Small-worlds. The most popular manifestation of the small-world e�et is the �Six degrees ofseparation� being also the title of S. Milgram's book. He found that a typial distane in the network ofaquaintane among people in the USA is about six. In the language of graph theory, this means that theaverage path length is six. If relationships between people formed a regular, two-dimensional grid, thenfor N = 3×108 people the average distane 〈l〉 would be of order 104. The experiment made by Milgramshowed that 〈l〉 grows rather as ∼ lnN . More generally, one speaks about a small-world network whenthe typial distane or the diameter grows like logarithm of the system size. It is di�erent from the aseof a regular lattie in d dimensions where

〈l〉 ∼ N1/d, (1.7)4



but it agrees well with simple models of random graphs. Indeed, one an estimate the number of nodesof a random graph at distane l to some partiular node as k̄l. This has to be equal to N for l beingthe diameter and hene 〈l〉 ∼ lnN . If one de�nes a fratal dimension of the network as d from Eq. (1.7),one gets d = ∞ for a small-world. We will see later that random graphs of a speial type, namelyhomogeneous random trees (Setion 2.3) do not need to be small-worlds, thus randomness per se is nota su�ient ondition to trigger the e�et.Clustering. This is a ommon property of many soial networks whih desribes the tendeny toform liques of aquaintanes. It is a rule that friends of our friends are often also our friends. In thelanguage of graphs this means that there are many triangles in the network. Two measures of lusteringare most popular. The �rst one is a global measure or a lustering oe�ient C:
C =

3 × number of trianglesnumber of onneted triples , (1.8)where a onneted triple is a subgraph onsisting of three nodes with at least two links between them.For a omplete graph, all nodes are onneted and thus C = 1 whih agrees with the intuition thatthe omplete graph forms a big interonneted lique. For trees, C = 0 beause of the absene of anyyles (and hene also triangles) whih is also intuitively omprehensible. For any other networks, C liessomewhere between 0 and 1. Another de�nition of the lustering oe�ient is based on loal propertiesof nodes. Let i be a node with degree ki and ci be the number of edges existing between the neighborsof i, or in other words, the number of triangles having one vertex at i. Then we de�ne a loal lusteringoe�ient:
Ci =

ci
ki(ki − 1)/2

, (1.9)whih is one if all neighbors of the node i are onneted. The lustering oe�ient for the whole networkis the average of all Ci's. Both de�nitions of C are qualitatively onsistent and give roughly the samevalues for real networks, being rather high (typially C > 0.1) in omparison to random graphs of thesame size where C ∼ 1/N (see Setion 2.1.1).After this introdution to the most interested observables on omplex networks, let us shortly disusssome examples of real-world networks. Let us begin with the World Wide Web (WWW), whih representsthe largest network for whih information about topology is urrently available. The nodes are webpages and the edges are hyperlinks pointing from one page to another. This kind of struture an berepresented by a direted graph. It is, however, possible to onsider undireted networks where nodes areself-ontained olletions of web pages and the undireted link is formed if there is any hyperlink betweenpages belonging to di�erent sites. The Web was probably the �rst network, for whih the power-lawdegree distribution Π(k) was disovered by Albert and Barabási, and Kumar et. al. [8, 9℄. The totalnumber of nodes in the WWW is of order several billions2, but until now it was impossible to searh thewhole network. For a subset of about N = 300, 000 nodes the exponents γin and γout in power laws for in-and out-degree distribution were estimated to be 2.1 and 2.45, respetively. Later these estimations havebeen orreted to 2.1 and 2.72, where both distributions were olleted on a network with 200 millionsof douments [10℄. The power law is observed in a range of k overing �ve orders of magnitude. Thenetwork onsidered in [10℄ had the average degree k̄ = 7.5, and the average path length around 16, whihagrees with the oneption of small worlds sine lnN ≈ 19. The lustering oe�ient has been found foranother subset of the WWW [11℄, with 1-degree nodes exluded and the size N ≈ 150, 000, to be about
0.11, being muh larger than for randomized graph of the same size.In ontrast to the WWW, the Internet is a physial network of omputers (nodes) and wire- orwireless onnetions (edges). For the Internet treated as undireted network, the power law in the degreedistribution has been found to hold over three orders of magnitude with γ being in the range 2.1 − 2.5[12, 13℄. Also the high lustering and small-world behavior have been on�rmed, indiating a similarityof the Internet to the WWW.There is also a large lass of so alled soial networks. These are networks desribing relationships be-tween humans, either based on physial interpersonal ontats (movie or siene ollaboration networks,human sexual ontats) or non-physial like the itation network being in fat the graph of itation pat-terns of sienti� publiations (for a review see e.g. [1, 4℄). These networks share also some ommonfeatures. All of them are sale-free with the exponent γ varying between 2.1 for some sienti� ollab-orations to 3.5 for the web of sexual ontats. Also the lustering is muh larger than for an analogousrandom graph. The very interesting ase happens for the itation network of papers published in Phys.2In 2004 Google stated that they indexed over 4,000,000,000 web pages. It is, however, di�ult to de�ne, what is a singleweb page, therefore their number varies by two order of magnitude from de�nition to de�nition. Moreover, the WWWgrows very quikly, making all preise estimations meaningless.5



Rev. D [14℄, where γ seems to be very lose to three, indiating that it an evolve due to the preferentialattahment [15℄ desribed below in Setion 2.2.1.The last lass of networks we want to mention are various biologial networks. For instane, one anstudy the metabolism of a living ell and onstrut a graph with nodes being hemial reagents and linksdenoting possible hemial reations. Again, for a network like that [16℄ the usual behavior has beenfound: the power-law degree distribution, high lustering and small diameter. Another type of networks,showing possible bindings between proteins [17℄, exhibits the power-law behavior with γ = 2.4 but withan exponential uto� above k ≈ 20.There are many other examples of networks: eologial, neural or linguisti ones or a network of allphones et., whih have not been ited here. We deided to skip them beause the examples presentedabove are already a good sample of what one an �nd in real networks. The inquiring reader is referredto the review artiles given in the �rst setion of this hapter.1.4 The aims and the sope of the thesisAlthough many models have been proposed to apture various properties of omplex networks, thereis a relatively small number of papers whih aim on formulating a sort of general theory of omplexnetworks from physiist's point of view. In suh a theory one is interested in having a general frameworkfor modeling, alulating, omputing or estimating quantities of interest and explaining the existingfats rather than in formulating general theorems or �nding formal proofs of statements with idealizedassumptions. Of ourse these two diretions should be developed in parallel, sine they are omplementary.Here we shall onentrate on the former one, that is on pratial aspets and on a physial theory ofomplex networks. The latter diretion is overed by the mathematial literature on random graphs.Therefore, the aim of this thesis is to present a theory of omplex networks based on statistialmehanis, where the entral role is played by the onept of statistial ensemble of graphs. This approahto omplex networks has been ontinuously developed over the past ten years by many people, inludingD. ben-Avraham, M. Bauer, J. Berg, D. Bernard, P. Bialas, G. Bianoni, P. Blanhard, M. Boguñá, Z.Burda, G. Caldarelli, J. D. Correia, I. Derényi, S. N. Dorogovtsev, I. Farkas, A. Fr¡zak, K.-I. Goh, A. V.Goltsev, S. Havlin, J. A. Hoªyst, B. Kahng, D. Kim, P. Krapivsky, T. Krüger, A. Krzywiki, M. Lässig,D.-S. Lee, J. F. F. Mendes, M. E. J. Newman, G. Palla, J. Park, R. Pastor-Satorras, A. M. Povolotsky,S. Redner, A. N. Samukhin, T. Visek, and many others. In the thesis we disuss ideas and methodsdeveloped in this approah as well as a variety of results obtained within this framework. In this generalontext we present the original ontribution of the author. It is partially based on yet unpublished work.The remaining part of the thesis is divided into three hapters, subdivided into setions. Eah hapterand eah setion begin with a short introdution and a summary of most important results derived there.Chapter 2 is devoted to a general presentation of statistial mehanis of networks. First, the mostimportant models are desribed and then they are formulated in terms of statistial physis. The approahvia statistial ensemble of random graphs is developed and it is shown how to design a very general MonteCarlo algorithm, suitable for generating various networks on a omputer. Also the rate equation approahis presented sine it is well suited for growing networks, being the vast part of proposed models. Thehapter is ended with a setion on the omparison between growing networks and networks obtained bya proess of �thermalization� (or �homogenization�) by rewiring links.Chapter 3 deals with appliations of these ideas to omplex networks. First we disuss �nite-sizeorretions to power-law degree distributions. Suh orretions are always present for �nite networks andmay signi�antly a�et atual properties of the network. We develop an analytial method to evaluatethe orretions and present results of this evaluation for some S-F networks. We ompare the analytiresults with numerial simulations. In the subsequent setion of this hapter we disuss dynamis takingplae on networks. We onsider a speial model alled zero-range proess. The appliation of the zero-range proess to the desription of many important phenomena like mass transport or ondensation inhomogeneous systems has been widely disussed in the literature. We onentrate here on the behaviorof the zero-range proess on omplex networks, where inhomogeneity in nodes degrees plays an importantrole. After a preliminary disussion of the model we present our �ndings onerning stati and dynamialproperties of the proess on inhomogeneous networks.Chapter 4 ontains onlusions and outlook.
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Chapter 2Statistial mehanis of networksFor a long time networks were studied by mathematiians as a part of graph theory. In reent years ithas been disovered that many onepts and methods of statistial physis an be suessfully applied todesription of omplex networks, and many papers have been dediated to the problem of formulatingpriniples of statistial mehanis of networks (see e.g. [1, 18, 19, 20, 21℄). In this hapter we shallpresent some of these ideas. Although all of them originate from the same statistial physis, the natureof omplex networks leads to distinguishing two lasses of methods: those for networks being in a sort ofequilibrium to whih the onept of statistial ensembles naturally applies, and those for non-equilibriumnetworks whih are most naturally formulated within the rate-equation approah. We shall refer to thetwo lasses of networks as to equilibrated and growing (ausal) networks, respetively. While theseond term is ommonly aepted in this ontext, networks belonging to the �rst lass are sometimesalled homogeneous networks [22℄ or maximal entropy random networks [23℄. Here we shall use the term�equilibrated� sine it resembles the way how these networks are generated1.We have split this hapter into three setions. In the �rst setion we disuss equilibrated networks.We �rst present the most famous examples of networks of that type. Then we show how to formulatea onsistent theory of statistial ensembles of these networks starting from the simplest onstrution ofErdös-Rényi random graphs. We show that asribing non-trivial statistial weights to graphs from thisset we an produe networks with any desired features, as for instane networks having the power-lawdegree distribution, high lustering, degree-degree orrelations et. We present also a dynamial MonteCarlo algorithm, based on a onstrution of Markov hains, whih allows one to generate equilibratedgraphs.At the beginning of the seond setion we show some famous examples of growing networks. Thesenetworks are generated by a growth proess in whih new nodes are attahed to the existing network,so by the onstrution nodes are ausally ordered in time. Therefore the words �growing� and �ausal�are used to name these networks. Their growing harater explains why the rate equation approah isso suessful in this �eld. We will see, however, that ausal networks an also be desribed within theformulation via statistial ensembles whih in some ases is even more onvenient.In the third setion we present di�erenes and similarities between equilibrated and growing omplexnetworks. The ausality manifests itself as a very strong onstraint that selets a subset of networks fromthe orresponding set of equilibrated graphs. In e�et, �typial� networks in this subset usually have quitedi�erent properties than �typial� networks in the whole ensemble, even if networks in the two ensembleshave idential statistial weights.The ideas presented in this hapter have been introdued earlier by many people. They are satteredin many papers and used in di�erent ontexts. Here we want to ollet them and omment on theirappliability to some problems in the theory of omplex networks. This shall form a basis for theonsiderations presented in the next hapter, where some appliations will be disussed.2.1 Equilibrated networksAs mentioned, we shall use the term �equilibrated networks� to refer to networks whih are loselyrelated to maximally random graphs. Although they an be onstruted by many di�erent methods,their ommon feature is that nodes, even if labeled, annot be distinguished by any other attribute. For1In our earlier papers we often alled these networks �homogeneous�. In this thesis we shall reserve this word for networkswith all nodes having the same degree, like k-regular graphs, with all degrees being equal to k. This is also the most popularmeaning in the literature. 7



example, they may not be ausally ordered. This means that if one generates a labeled network andrepeats the proess of generation many times, eah node will have statistially the same properties asevery other node, e.g. it will have on average the same number of neighbors, the same loal lusteringet. We stress here the meaning of the phrase �statistially the same�, whih means that it does notmake sense to speak about a single network, but rather about a set of networks, similarly as one speaksabout the set of states in lassial or quantum physis. In this way a statistial ensemble of graphsnaturally arises as a tool for studying �typial� properties of networks. As we shall see later, equilibratednetworks belonging to the given ensemble are in a sort of thermodynamial equilibrium, however it is notan equilibrium in the sense of lassial thermodynamis, where the statistial weight of a state is given bythe Gibbs measure: ∼ exp(−βE), with E being the energy of the state. In the ase of omplex networksit is onvenient to abandon the onept of energy and Gibbs measure and onsider a more general form ofstatistial weights. Therefore suh a onept like temperature is often meaningless, although there weresome attempts to de�ne this quantity for networks [24℄.Before we de�ne a statistial ensemble of equilibrated networks, we shall present some examples ofnetworks belonging to this lass. They were introdued over the past 50 years. One of them, known asErdös-Rényi model (ER model), is a pure mathematial onstrution. Muh is known and an be provedrigorously for that model. In this respet, the ER model is exeptional sine other models invented tomimi some features of real networks have not been studied so thoroughly and many results are not sorigorous. After a short presentation of the ER model we shall show how to hange statistial propertiesof typial graphs by introduing an additional weight to every graph in the ER ensemble. The resultingensemble of equilibrated graphs an be �exibly modeled by hoosing appropriate weights. For instane,we shall see how to obtain a power-law degree distribution, or how to introdue degree-degree orrelations.Towards the end of the setion we shall present a quite general Monte Carlo algorithm for generatingsuh equilibrated weighted graphs.2.1.1 Examples of equilibrated networksAs a �rst example of a network model belonging to the lass of equilibrated networks we shall desribe theErdös-Rényi model. In their lassial papers [25℄ in 1950s Erdös and Rényi proposed to study a graphobtained from linking N nodes by L edges, hosen uniformly from all (N2 ) = N(N − 1)/2 possibilities.In this thesis we shall often refer to it as a maximally random graph sine it is totally random, that isedges are dropped on pairs of nodes regardless of how many links the nodes have already got. The onlyonstraint is that one annot onnet any pair of nodes by more than one link, so the ER graph is asimple graph. The graph an be onstruted in an alternative way by random rewirings. This will bedisussed later in setion 2.1.5 whih is devoted to omputer simulations. Beside the ER model there isalso a very similar onstrution alled the binomial model. Here one starts with N empty nodes andjoins every pair of nodes with probability p. The name of the model beomes obvious when one realizesthat the distribution P (L) of the number of links L is given by the formula:
P (L) =

(

N(N − 1)/2

L

)

pL(1 − p)N(N−1)/2−L. (2.1)In this model, also introdued by Erdös and Rényi, the number of nodes is not �xed, but �utuatesaround 〈L〉 = pN(N − 1)/2. This means that also the average degree k̄ is a random variable with themean 〈k〉 ∼= pN . However, beause real-world networks have �xed average degree while their size an bevery large, in order to ompare binomial-graphs to real-world networks one usually sales p ∝ 1/N . Underthis saling the orresponding graphs have �xed k̄ and thus are sparse. If one alulates the variane of
P (L) keeping the average degree onstant in the limit of N → ∞, one �nds that the variane grows onlyas ∼ N and that the distribution P (L) beomes Gaussian with the relative width ∼ 1/

√
N falling to zero.Thus almost all binomial graphs have the same number of links 〈L〉 in the thermodynamial limit andtherefore the ER and binomial graphs beome equivalent to eah other for large N . Later on we shall seethat the ER model de�nes a anonial ensemble of graphs while the binomial model - a grand-anonialensemble, with respet to the number of edges. In Fig. 2.1 we show some examples of binomial graphsfor di�erent p.Like we have already mentioned, we are interested in properties of the model in the thermodynamiallimit, that is for very large graphs. The great disovery of Erdös and Rényi was that many motifs, liketrees of a given size, yles or the giant omponent, appear for typial graphs suddenly when p rossesa ertain threshold value pc. The thresholds are di�erent for di�erent motifs. For p just below pc thereare almost no motifs of a given type, while for p just above pc the motifs an be found with probabilityone. This is similar to the perolation transition on a lattie. For random graphs, however, pc depends8



usually on the system size, N , and must be properly saled to get �xed values of ritial parameters inthe thermodynamial limit. For example, if one sales p as p = k̄/N , the desired average degree k̄ playsthe role of a ontrol parameter. In the limit N → ∞,
〈k〉 = k̄, (2.2)and the graph is sparse making it omparable to some real networks. One an ask what is the ritialvalue of the ontrol parameter k̄, for some motifs to appear on the network. Erdös, Rényi and theirfollowers were interested in a more general problem. If one assumes that p sales as p ∼ N−z for large Nwith z being an arbitrary real number, what are ritial values of z at whih some properties appear inthe thermodynami limit? Below we present some important �ndings.1) Subgraphs: for binomial graphs one an determine the threshold values of the exponent z whensubgraphs of a given type appear. One an argue [26℄ that the average number of subgraphs having nnodes and l edges is equal to

(

N

n

)

n!

nI
pl ≈ Nnpl

nI
∼ Nn−zl, (2.3)beause n nodes an be hosen out of N in (Nn) possible ways and they an be onneted by l edges withprobability pl. In addition one has to take into aount that if one permutes n nodes' labels one obtains

n!/nI di�erent graphs, where nI is the number of isomorphi graphs. From the formula (2.3) one aninfer the ritial value of the exponent z for having at least O(1) subgraphs of the given type in the limit
N → ∞. For instane, the ritial value of z for a tree of size n is zc = n/(n−1), sine for trees l = n−1.This means that for z ≥ 2 the only subgraphs present in the graph are empty nodes and separated edges.When z dereases from 2 to 1, trees of higher and higher size appear in the graph. Finally for z ≤ 1 treesof all sizes are present as well as yles, beause for yles the ritial zc is also 1. However, the numberof yles of a given length is always onstant for z = 1, regardless of the size N . Thus binomial andER random graphs are loally tree-like if p ∼ 1/N . Beause the lustering oe�ient C is proportionalto the number of triangles (n = l = 3) and inversely proportional to the number of onneted triples(n = 3, l = 2), one sees from Eq. (2.3) that C ∼ 1/N and that it vanishes for sparse networks in thethermodynami limit. This is the �rst property of random graphs that disagrees with empirial resultsfor real networks, for whih, like we saw in Se. 1.3, C is always muh greater than zero.2) Giant omponent. For the most interesting ase of p ∼ 1/N , there is a ritial value of k̄c = 1,above whih a �nite fration of all nodes forms a onneted omponent, alled giant omponent. For
k̄ = 1 it has approximately N2/3 nodes but it grows quikly with k̄ so that for k̄ of order 5 and large
N , more than 99% nodes belong to the giant omponent. All other lusters are relatively small, andmost of them are trees. Thus when k̄ passes the threshold k̄c = 1, the struture of graph hanges froma olletion of small lusters being trees of size ∼ lnN , to a single large luster of size ∼ N ontainingloops (yles), and the remaining omponents being small trees. This behavior is harateristi not onlyfor ER or binomial graphs, but it is a general feature of random graphs with various degree distributions[1℄. 3) Degree distribution. For binomial graphs it is extremely simple to obtain the formula for degreedistribution Π(k), just by observing that a node of degree k has k neighbors hosen out of N − 1 othernodes, and eah of them is linked to the node with probability p:

Π(k) =

(

N − 1

k

)

pk(1 − p)N−1−k, (2.4)whih for large N beomes a Poissonian distribution:
Π(k) ∼= e−k̄

k̄k

k!
. (2.5)The same funtion desribes the node-degree distribution for ER graphs in the limit of N → ∞. Forlarge k̄ the degree distribution has a peak at k ≈ k̄. Its width grows as √k̄, so random graphs with highaverage degree are almost homogeneous in the sense of nodes degrees whih assume values very lose to

k̄. This is a seond feature that disagrees with real networks, where Π(k) has often a heavy tail meaningthat there are some nodes with high degrees far from the mean value, alled �hubs�.4) Diameter. As we mentioned in Se. 1.2 we will alulate the diameter de�ned as the averagedistane l̄ between pairs of nodes in the network rather than the maximal distane d. We expet that l̄is roughly proportional to d. Certainly it is a good measure of the linear extension of the network. For9



p=0.1 p=0.3 p=0.8Figure 2.1: Binomial graphs for N = 10 and various p. For p = 0.1 the graph onsists of separated trees.For p = 0.3 for whih k̄ = 2.7 we are above the perolation threshold k̄c = 1 and the giant omponentemerges (fat lines in the middle piture). In the limit of p→ 1 the graph beomes dense.both de�nitions it has been found that above the threshold k̄c = 1, when a giant omponent is formed,the diameter grows only logarithmially with the size of the graph:
l̄ ∝ lnN

ln k̄
. (2.6)We know that this behavior is alled a small-world e�et, and is almost always present in real-worldnetworks.A next onstrution, whih we brie�y disuss, is the Watts-Strogatz model [27℄. Its main featureis that it extrapolates between regular and random graphs. We start with N nodes loated on a ring(see �gure 2.2). Eah node is onneted to K of its nearest-neighbors, so all nodes have initially degree

K. Then one rewires eah edge with probability p to randomly hosen nodes, or leave it in plae withprobability 1− p. Self- and multiple-onnetions are exluded. By tuning p one an extrapolate between
K-regular graph (p = 0) and the maximally random ER graph (p = 1). This model originally arosefrom onsiderations of soial networks, where people have mainly friends from loal neighborhood, butsometimes they know someone living away - these ases are represented by rewired long-range edges.An important feature of this model is that the network an have a small diameter and large lusteringoe�ient at the same time. Let us onsider �rst the limit p = 0. The network is regular and a ring-like.Therefore, the diameter dreg ∼ N grows linearly with N . The lustering oe�ient Creg is onstant andlarger than zero when N → ∞ beause the nearest neighborhood of eah node looks the same and thereare always some triangles2. On the other hand, for p = 1 we have the ER random graph for whih
drand ∼ lnN and Crand ∼ 1/N → 0. Watts and Strogatz found [27℄ that there is a broad range of p,where d ≈ drand and C ≈ Creg. This is the result of a rapid drop of the diameter d when p grows,while the lustering oe�ient C hanges very slow. The diameter dereases fast beause even a smalladdition of short-uts whih takes plae during the rewiring proess, redues signi�antly the averagedistane between any pair of nodes. These two properties, namely high lustering and small-world e�et,agree with �ndings for many real networks. However, the degree distribution is similar to that of ERrandom graphs. There is no natural possibility to produe a power-law (or generally fat-tailed) degreedistribution in this model.Now we shall desribe the Molloy-Reed model [28, 29, 30℄ or on�guration model, whih allows foronstrution of pseudographs as well as simple graphs. In the Molloy-Reed model, to build a graph with
N nodes one generates a sequene of non-negative integers {k1, k2, . . . , kN}, almost always as independentidentially distributed numbers from a desired distribution Π(k) and interprets ki's as node degrees. Theonly requirement is that the sum k1 + k2 + · · · + kN = 2L is even. In the �rst step, eah integer kirepresents a hub onsisting of node i and ki outgoing �half-edges�. In the seond step these �half-edges�are paired randomly to form undireted links whih now onnet nodes (see �gure 2.3). The number oflinks �utuates around N〈k〉/2 if no additional onstraint is imposed. In general, this proedure leads topseudographs sine sometimes an edge an be reated between already onneted nodes. To restrit tosimple graphs one has to stop the proedure every time when a multiple or self-onneting link is reated,and to start it from the beginning. This an be very time-onsuming, espeially for degree distributionswith heavy-tails, where it is unlikely to produe only a single link between nodes of high degree. Thussometimes for pratial purposes one does not disard the whole network but only the last move, and2We onsider only the ase of K > 2 when the network is onneted.10



pFigure 2.2: Example of the onstrution of Watts-Strogatz small-world network. Starting from N = 10nodes, eah with degree 4, one rewires some edges with probability p. As p inreases, the graph beomesmore random.
Figure 2.3: Example of the Molloy-Reed onstrution of pseudographs. We start from N = 5 emptynodes with ki �half-edges� (left-hand side) onneted to node i. The numbers ki are taken independentlyfrom some distribution Π(k). On the right-hand side we show two possible on�gurations obtained bypairing half-edges.hooses another pair of half-edges. This introdues orrelations to the network and an unontrolled biasto the sampling. In other words, graphs are not sampled uniformly [31℄.Using this model Molloy and Reed have shown that for networks with unorrelated degrees the giantomponent emerges when the following ondition is ful�lled:

∑

k

k(k − 2)Π(k) > 0. (2.7)For Π(k) being Poissonian one gets the well-known result for ER graphs: k̄c = 1. The most importantproperty of the model is that it allows for power-law degree distribution. Indeed, up to �nite-size e�ets,the distribution Π(k) is reprodued orretly. The average path length l̄ has also been alulated [3℄; itgrows as lnN with the system size, so again one has a small-world behavior. The lustering oe�ient isproportional to k̄/N so it vanishes as for random graphs, but the proportionality oe�ient depends on
Π(k) and may be quite large for heavy-tailed distributions.Finally, we shall mention the Maslov-Sneppen algorithm [32℄ used for obtaining a randomizedversion of any network. The original motivation was to examine whether the appearane of degree-degree orrelations and other non-trivial properties observed in some biologial networks ould be entirelyattributed to the power-law degree distribution. The basi step in this algorithm involves rewiring oftwo edges. One selets two edges: i → j and k → l, and then one rewires their endpoints to get i → land k → j. If this move leads to multiple- or self-onnetions, one rejets it and tries with another pairof edges. To obtain a randomized (�thermalized�) version of the given network, one repeats this movemany times. The algorithm preserves degrees of all nodes, so at the end of randomization the degreedistribution is the same as for the original network. However, thermalization breaks any orrelationsbetween nodes whih might be present at the beginning. In a sense, one obtains a new network beingmaximally random for the given sequene of degrees {k1, . . . , kN}. In next setions we will see that thisalgorithm is also very helpful for generating graphs in a miro-anonial ensemble.The four models presented above learly belong to the lass of equilibrated networks beause everynode on the network has statistially the same properties. Nodes have no individual attributes whihwould be orrelated with nodes' labels, as one an see if one repeats the proess of generation of networksmany times. In the next subsetion we shall explain in a more detailed way what it means and how to11



de�ne an ensemble of equilibrated graphs. We shall see that graphs from the ensemble an be generatedin a proess of thermalization whih homogenizes the network.2.1.2 Canonial ensemble for ER random graphsThe basi onept in the statistial formulation is that of statistial ensemble. The statistial ensemble ofnetworks is de�ned by asribing a statistial weight to every graph in the given set. Physial quantitiesare measured as weighted averages over all graphs in the ensemble. The probability of ourrene ofa graph during random sampling is proportional to its statistial weight, thus the hoie of statistialweights a�ets the probability of ourrene and, in e�et, also �typial� properties of random graphs inthis ensemble. For onveniene, the statistial weight an be split into two omponents: a fundamentalweight and a funtional weight. If the funtional weight is independent of the graph, graphs are maximallyrandom. The fundamental weight tells one how to probe the set of �pure� graphs uniformly, so that eahgraph in the ensemble is equiprobable. In other words, the fundamental weight de�nes an uniform measureon the given set of graphs and should be �xed. The funtional weight is the parameter of the model.What is the most natural andidate for the fundamental weight for graphs? Consider simple graphswith a �xed number of nodes. We an hoose the uniform measure by saying that in this ase all unlabeledgraphs are equiprobable, or alternatively that all labeled graphs are equiprobable. These two de�nitionsgive two di�erent probability measures sine the number of ways in whih one an label graph's nodesdepends on graph's topology. It turns out that the latter de�nition is in many respets better and we willstik to it. For instane, with this de�nition ER graphs have a uniform measure and thus are maximallyrandom. There are also some pratial reasons. First, in the real world as well as in omputer simulationsnode are labeled3. Seond, it is not easy to determine whether two unlabeled graphs are idential or not.The problem of graph isomorphism has ertainly NP-omplexity but it is unknown if it is NP-omplete[33℄.For pseudographs, the fundamental weight is most naturally de�ned by saying that fully labeledgraphs, that is having nodes and edges' endpoints labeled, are equiprobable in the maximally randomase. One an show that for this hoie eah unlabeled graph has the weight equal to the symmetryfator of Feynman diagrams generated in the Gaussian perturbation �eld theory [20, 34℄.Let us onentrate on simple graphs. Consider again an ensemble of Erdös-Rényi's graphs with Nlabeled nodes and an arbitrary number L of (unlabeled) links. Sine eah ER graph from this ensemblean be in a one-to-one way represented as a symmetri N ×N adjaeny matrix we see that the uniformmeasure in this ensemble is alternatively de�ned by saying that all suh matries are equiprobable. Whatabout unlabeled graphs? Are they equiprobable in this ensemble? An unlabeled graph is obtained froma labeled one by removing labels. We immediately see that eah unlabeled graph an be obtained frommany di�erent labeled graphs. Let us onsider the unlabeled one shown on the left-hand side in theupper part of Fig. 2.4. Sine there are three nodes one an naively think that there are 3! labeled graphsorresponding to this shape as shown on the left-hand side of the �gure. Atually, it turns out that thereare only three distint ones in the sense of having distint adjaeny matrix. Graphs A, C, E are distint,but B is idential to A, D to C, and F to E:
AA = AB =





0 1 1
1 0 0
1 0 0



 , AC = AD =





0 1 0
1 0 1
0 1 0



 , AE = AF =





0 0 1
0 0 1
1 1 0



 . (2.8)In other words there are three labeled graphs having this shape. On the other hand, if one takes the shapein the lower line of Fig. 2.4 one an see that there is only one labeled graph orresponding to it, sineall others have the same adjaeny matrix. In view of this we see that the probability of ourrene ofthe upper shape is three times larger than of the lower one sine the upper is realized by three adjaenymatries while the lower has only one realization.Let us onsider now an ensemble of Erdös-Rényi graphs with N = 4, L = 3. The set onsists of onlythree distint unlabeled graphs A, B, C shown in Fig. 2.5. Eah graph has a few possible realizationsas a labeled graph. One an label four verties of A in 4! = 24 ways orresponding to permutationsof nodes 1 − 2 − 3 − 4, but only nA = 12 of them give distint labeled graphs. It is so beause everypermutation has its symmetri ounterpart whih gives exatly the same labeled graph, e.g. 1− 2− 3− 4and 4 − 3 − 2 − 1. Similarly, one an �nd that there are nB = 4 labeled graphs for B and nC = 4 for C.One an hek that indeed by dropping three links at random on four nodes one gets these numbers oflabeled ER shapes. Altogether, there are nA + nB + nC = 20 labeled graphs in the given set. Beause3In real-world networks one an always distinguish nodes for example by names of Web pages, people, sienti� paperset. On a omputer, nodes are obviously labeled by their representation in omputer memory.12
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B CAFigure 2.5: Three possible graphs for N = 4, L = 3, for eah of them one of possible labellings is shown.The total number of di�erent labellings of these graphs is: nA = 12, nB = 4, nC = 4.all labeled graphs are assumed to be equiprobable, the shapes A, B, C have the following probabilities ofourrene during the random sampling:
pA =

nA
n

=
3

5
, pB =

nB
n

=
1

5
, pC =

nC
n

=
1

5
. (2.9)We see that (unlabeled) ER graphs are not equiprobable - the distribution is uniform only for labeledgraphs. Let us denote the statistial weights for A, B, C by wA, wB , wC . They are proportional toprobabilities of on�gurations and hene wA : wB : wC = pA : pB : pC . There is a ommon proportionalityonstant in the weights, whih we for onveniene hoose so that the weight of eah labeled graph is 1/N !.For this hoie we have wA = 1/2, wB = 1/6, wC = 1/6. The larger is the symmetry of a graphtopology, the smaller is the number of underlying labeled graphs and thus the smaller is the statistialweight. The hoie 1/N ! ompensates the trivial fator of permutations of indies, and thus removesoverounting - however, for graphs with �xed number of nodes this partiular hoie does not in�ueneon any physial properties.We now apply the above ideas to de�ne an ensemble of ER graphs with arbitrary N,L. The partitionfuntion Z(N,L) for the Erdös-Rényi ensemble an be written in the form:

Z(N,L) =
∑

α′∈lg(N,L)

1

N !
=

∑

α∈g(N,L)

w(α), (2.10)where lg(N,L) is the set of all labeled graphs with given N,L and g(N,L) is the orresponding set of(unlabeled) graphs. The weight w(α) = n(α)/N !, where n(α) is the number of labeled versions of graph
α. We are interested in physial quantities averaged over the ensemble. The word �physial� means herethat the quantity depends only on graph's topology and not on how nodes' labels are assigned to it. Itis a natural requirement. The average of a quantity O over the ensemble is de�ned as

〈O〉 ≡ 1

Z(N,L)

∑

α′∈lg(N,L)

O(α′)
1

N !
=

1

Z(N,L)

∑

α∈g(N,L)

w(α)O(α). (2.11)We shall refer to the ensemble with �xed N,L as to a anonial ensemble. The word �anonial� is usedhere to emphasize that the number of links L is onserved like the total number of partiles in a ontainer13



with ideal gas remaining in thermal balane with a soure of heat. Although there is no temperaturehere, the analogy is lose beause, as we shall see later, these graphs an be indeed generated in a sort ofthermalization proess.The partition funtion Z(N,L) an be alulated by summing over all adjaeny matries A whihare symmetri, have zeros on the diagonal and L unities above the diagonal [22℄. The result is:
Z(N,L) =

1

N !

(
(

N
2

)

L

)

, (2.12)whih agrees with simple ombinatoris: there are ((N

2 )
L

) ways of hoosing L links among all possible
(

N
2

) edges. In a similar manner, summing over adjaeny matries, one an alulate averages of variousquantities. As an example let us onsider the node degree distribution Π(k):
Π(k) =

〈

1

N

∑

i

δk,ki

〉

, (2.13)where one an use an integral representation of the disrete delta to get [22℄
Π(k) =

(
(

N−1
2

)

L− k

)(

N − 1

k

)

/

(
(

N
2

)

L

)

. (2.14)This is an exat result for ER random graphs. It redues in the limit k̄ = onst, N → ∞ to the Poissoniandistribution (2.5).2.1.3 Grand-anonial and miro-anonial ensemble of random graphsSo far we have disussed the anonial ensemble of Erdös-Rényi graphs with N,L �xed. If we allow for�utuations of the number of edges, we get the binomial model. The probability of obtaining a labeledgraph with given L is P (L) = pL(1 − p)(
N

2 )−L. Thus the partition funtion is
Z0(N,µ) =

∑

L

∑

α∈lg(N,L)

1

N !
P (L(α)) = (1 − p)(

N

2 )
∑

L

(

p

1 − p

)L
∑

α∈lg(N,L)

1

N !
. (2.15)The fator (1 − p)(

N

2 ) is inessential for �xed N and an be skipped. The new partition funtion reads
Z(N,µ) =

∑

L

exp(−µL) Z(N,L), (2.16)where p
1−p ≡ exp(−µ) or equivalently µ = ln 1−p

p . The weight of a labeled graph α is now w(α) =

exp(−µL(α))/N !, where µ is a onstant whih an be interpreted as a hemial potential for links in thegrand-anonial ensemble (2.16). Notie that the funtion (2.16) an be regarded as the generatingfuntion for Z(N,L). One an alulate the average number of links or its variane as derivatives of thegrand-anonial partition funtion with respet to µ:
〈L〉 = −∂µ lnZ(N,µ), (2.17)

〈L2〉 − 〈L〉2 = ∂2
µ lnZ(N,µ). (2.18)Like for the anonial ensemble of ER graphs, the sum of states an be done exatly:

Z(N,µ) =

(N

2 )
∑

L=0

e−µL
1

N !

(
(

N
2

)

L

)

=
1

N !
(1 + e−µ)(

N

2 ). (2.19)It is easy to see that for �xed hemial potential µ the average number of links behaves as
〈L〉 = p

N(N − 1)

2
=

1

1 + eµ
N(N − 1)

2
. (2.20)Thus for N → ∞ the graphs beome dense; k̄ inreases to in�nity. We know that this pathology an beured by an appropriate saling of the probability p: p ∼ 1/N . Sine µ = ln 1−p

p , this orresponds to14



µ ∼ lnN . In this ase L is proportional to N . The orresponding graphs beome sparse and the meannode degree is now �nite. The situation in whih µ sales as lnN is very di�erent from the situation knownfrom lassial statistial physis, where suh quantities like hemial potential µ are intensive and do notdepend on system size N in the thermodynami limit N → ∞. Moreover, the entropy S = lnZ(N,L) isnot extensive - one an show that
S =

k̄ − 2

2
N lnN +

2 + k̄ − k̄ ln k̄

2
N +O(lnN), (2.21)so the system is not �normal� in the thermodynamial sense for k̄ 6= 2. Only when k̄ = 2, that is if

N = L, the entropy beomes extensive. This means that eah graph from this set an be partitionedso that we get two sets of graphs A and B, with NA + NB = N nodes, and the partition funtion forA+B being just the produt of the partition funtions for A and B. In other words, almost every graphin A+B an be onstruted by taking two graphs: one from A and the seond one from B, and joiningtwo of their nodes by a link. In lassial statistial physis this means that interations between A andB take plae only on the boundary whih an be negleted in the thermodynamial limit. In the ontextof ER graphs, the ase N = L must therefore orresponds to the set of tree-like graphs - the number ofloops must be small and they must be short (loal).As mentioned, the di�erene between anonial and grand-anonial ensembles gradually disappearsin the large N limit. It is easy to see why. In a anonial ensemble of sparse graphs the average degree
k̄ = 2L/N is kept onstant when N → ∞ while in a grand-anonial it �utuates around 〈k〉 = 2〈L〉/N =
k̄, if µ is properly hosen. However, the magnitude of �utuations around the average disappears in thelarge N limit sine

〈L2〉 − 〈L〉2 =

(

N

2

)

e−µ

(1 + e−µ)2
, (2.22)and for µ ∼ lnN the relative width √〈L2〉 − 〈L〉2/〈L〉 ∼ N−1/2 → 0, so e�etively the system seletsgraphs with 〈k〉 = k̄.Apart from the anonial and grand-anonial ensembles, one an de�ne a miro-anonial en-semble of ER random graphs. By analogy with lassial physis, we de�ne it as a set of all equiprob-able graphs with presribed sequene of degrees {k1, . . . , kN} whih plays the role of the mirostate.Then the anonial ensemble is onstruted by summing over all sequenes obeying the onservation law

k1 + · · · + kN = 2L. It looks similar to the onstrution of Molloy and Reed, and indeed, it is its speialase. We shall make use of the miro-anonial ensemble in Chapter 3 in the ontext of dynamis ongraphs.2.1.4 Weighted equilibrated graphsIn the previous setion we desribed ensembles for whih all labeled graphs had the same statistialweight. They were just ER or binomial random graphs and thus had well known properties. In setion2.1.1 we pointed out however, that most of these properties do not orrespond to those observed for realworld networks. But the framework of statistial ensembles is very general and �exible and it allows oneto model a wide lass of random graphs and omplex networks with non-trivial properties. Consider thesame set of graphs as in the Erdös-Rényi model but now to eah graph in this set, in addition to itsfundamental weight 1/N !, we asribe a funtional weight W (α) whih may di�er from graph to graphso that graphs are no longer uniformly distributed. By tuning the funtional weight one an make thattypial graphs in the ensemble will be sale-free or have more loops, et. One has a freedom in hoosingthe funtional weight. The only restrition on W (α) is that it should not depend on the labeling beausegraphs need to remain equilibrated. We stress that we still have the same set of graphs but now theymay have distint statistial weights.The partition funtion for a weighted anonial ensemble an be written as
Z(N,L) =

∑

α′∈lg(N,L)

(1/N !)W (α′) =
∑

α∈g(N,L)

w(α)W (α), (2.23)where as before w(α) = n(α)/N ! ounts labeled graphs. For W (α) = 1 we reover the ensemble of ERgraphs. The simplest non-trivial hoie of W (α) is a family of produt weights:
W (α) =

N
∏

i=1

p(ki), (2.24)15



where p(k) is a semi-positive funtion depending on degree ki of node i. This funtional weight is loalin the sense that it depends only on individual degrees whih are a loal property of the graph. Itdoes not introdue expliitly orrelations between nodes, so we will all random graphs generated inthis ensemble unorrelated networks. One should, however, remember that the total weight does notentirely fatorize beause the fundamental weight w(α) = n(α)/N ! written as a funtion of node degrees
w(k1, k2, . . . , kN ) does not fatorize sine the number n(α) of labelings is not a produt of any loalproperty of the graph but is a global feature. There is also another fator whih prevents the model froma full fatorization and independene of node degrees, namely the onstraint on the total number of links
2L = k1 + k2 + · · · + kN whih for given L and N introdues orrelations between ki's. For example,if one of ki's is large, say ≈ 2L, then the remaining ones have to be small in order not to violate theonstraint on the sum. The e�et gradually disappears in the limit L → ∞ for a wide lass of weights
p(k) sine then the anonial ensemble and the grand-anonial ensemble, for whih L does not need tobe �xed, beome equivalent [18℄.The weight (2.24) is espeially well-suited for studying ensembles with various degree distributions andno higher-order orrelations. To see how p(k) is related to Π(k), let us �rst disuss the analogous ensembleof weighted pseudographs. They an model networks where self-interations of nodes are important, as forexample eologial networks whih desribe predator-prey relations where annibalism is often present.A pseudograph an be represented by a symmetri adjaeny matrix A whose o� diagonal entries Aijount the number of links between nodes i and j, and the diagonal ones Aii ount twie the numberof self-onneting links attahed to node i. Eah adjaeny matrix represents a ertain labeled graph,but now, due to possibility of multiple links, we label also edges and all suh a graph a fully labeledgraph. To eah fully labeled graph we asribe a on�gurational weight 1/N !(2L)!. The weight of eahlabeled graph (where only nodes are labeled) having adjaeny matrix A is then

1

N !

(

∏

i

1

2Aii/2 (Aii/2)!

)

∏

i>j

1

Aij !
=

1

N !

∏

i

1

Aii!!

∏

i>j

1

Aij !
, (2.25)where the origin of all symmetry fators is the same as in ase of Feynman diagrams and stems frompossible ways of labeling links (see e.g. [22℄). The key points behind introduing pseudographs are: i)the set ontains the subset of all simple graphs whih we are interested in, and, ii) despite a ompliatedform of Eq. (2.25), the anonial partition funtion an be easily evaluated. Let us rewrite the formula(2.23) for Z(N,L) for pseudographs with funtional weight (2.24):

1

N !

∑

~q

δP

i
qi−2L

∏

i

p(qi)
∑

Aii=

0,2,4,...

i=1..N

∑

Aij=

0,1,2,...

i>j

∏

i

δP

k<i
Aik+Aii+

P

k>i
Aki−qi

Aii!!

∏

i>j

1

Aij !
. (2.26)

Using the standard integral representation of the delta funtion we an rewrite all sums over Aij as
∮

∏

i

dzi
2πi

∑

Aii=0,2,4,...

z−1−qi+Aii

i

Aii!!

∑

Aij=0,1,2,...,i>j

∏

i

z
P

k<i Aik+
P

k>i Aki

i

∏

i>j

1

Aij !
. (2.27)The sum over diagonal elements gives a produt of fators ez2i /2. The sum over Aij is also easy toalulate and reads ∏i>j e

zizj . Putting the two results together we �nd the following fator: eP

i,j zizj/2.Therefore, the partition funtion is
Z(N,L) =

1

N !

∑

~q

δP

i
qi−2L

∮

∏

i

dzi
2πi

p(qi)z
−1−qi

i e
1
2 (

P

i
zi)

2

. (2.28)The last, quadrati term an be expanded by means of the Hubbard-Stratonovih identity:
exp

(

A2

2

)

=
1√
2π

∫

dx exp

(

−x
2

2
−Ax

)

. (2.29)The disrete delta giving onservation of links an be written as a ontour integral, so we get
Z(N,L) =

1

N !

∮

dy

2πi
y−1−2L

∫

dx√
2π
e−x

2/2

[

∮

dz

2πi

∑

q

p(q)
(y

z

)q exz

z

]N

. (2.30)16



The integral over dz yields (xy)q/q!. Changing variables: y → v = xy and hanging the order ofintegration over dx and dv we immediately obtain
Z(N,L) =

1

N !

∫

dx√
2π
e−x

2/2x2L

∮

dv

2πi

[

∑

q

p(q)
vq

q!

]N

v−1−2L =
(2L− 1)!!

N !

∮

dv

2πi
v−1−2LFN(v),(2.31)where we have de�ned the following generating funtion for weights p(q):

F (v) =
∑

q

p(q)
vq

q!
. (2.32)Up to now, these results are strit. However, the integral over dv is often hard to alulate for �nite

N,L. Fortunately, the partition funtion (2.31) an be alulated in the thermodynamial limit. Thesaddle-point integration yields:
lnZ(N,L) ≈ N lnF (v0) − (2L+ 1) ln v0 + ln

(2L− 1)!!

N !
+ . . . , (2.33)with v0 being a solution to the equation:

v0
F ′(v0)

F (v0)
= k̄. (2.34)We are now ready to alulate Π(k). Sine all nodes are equivalent in the equilibrated network withprodut weights (2.24), the degree distribution an be obtained by a simple di�erentiation of the partitionfuntion:

Π(k) =
p(k)

NZ(N,L)

∂Z(N,L)

∂p(k)
= p(k)

1

N

∂ lnZ(N,L)

∂p(k)
, (2.35)and by applying Eq. (2.33) we �nally arrive at

Π(k) =
p(k)vk0
k!F (v0)

. (2.36)This result has been derived in the thermodynamial limit for the anonial ensemble of pseudographs.If we try to do the same for simple graphs, the alulation of the partition funtion is more ompliated,beause if we exlude multiple and self-onnetions, the weight of eah labeled graph is idential, and theentries Aij of the adjaeny matrix assume now only two possible values 0 and 1. This leads to a hangeof the fator e 1
2 (

P

i
zi)

2 in Eq. (2.28) to
∏

i>j

(1 + zizj) = e
1
2

P

i6=j
ln(1+zizj). (2.37)The integrals over dzi annot be done in a straightforward way. One an, however, use the followingexpansion:

∑

i6=j

ln(1 + zizj) =

∞
∑

n=1

(−1)n

n

∑

i

z2n
i −

∞
∑

n=1

(−1)n

n

(

∑

i

zni

)2

, (2.38)and, in order to get the fatorization of zi's, to apply the H-S identity (2.29) to eah quadrati term inthe seond sum over n. This leads to the following, rather formal, integral:
Z(N,L) =

1

N !

∮

dy

2πi
y−1−2L

∫

dx1 · · ·
∫

dx∞

(

∞
∏

n=1

√

−n(−1)n

2π
e

n(−1)n

2 x2
n

)

×
∮

dz1
2πi

· · ·
∮

dzN
2πi

∑

q1,...,qN

(

∏

i

p(qi)y
qiz−1−qi

i

∞
∏

n=1

e
(−1)n

2n
z2n

i +xnz
n
i

)

. (2.39)If we look at Eq. (2.38) as a perturbative expansion, the integral over dxn gives a �produt� orretion of
nth order to Z(N,L). Taking only �rst few terms in n we get an approximation of Z(N,L), but beause17



we know that Z(N,L) is �nite, it is not neessary to take all of them. If we restrit ourselves only to the�rst order n = 1 we get
1

N !

∮

dy

2πi
y−1−2L 1√

2π

∫

dx1e
−x2

1/2

[

∑

q

p(q)

∮

dz

2πi

(y

z

)q e−z
2/2+x1z

z

]N

. (2.40)This is indeed a partition funtion for pseudographs but with single self-onnetions exluded. Multipleonnetions and double, triple, et. self-onnetions are still present. Changing variables y → v = x1yand evaluating the integral over dz we have
1

N !

1√
2π

∫

dx1e
−x2

1/2x2L
1

∮

dv

2πi
v−1−2L

[

∑

q

p(q)vq
∞
∑

m=0

(

− 1

2x2
1

)m
1

m!(q − 2m)!

]N

, (2.41)and beause the integral over dx1 is dominated by the region x1 ∼
√
L ∝

√
N , only the �rst term in thesum over m ontributes in the limit of N → ∞. We end up with a partition funtion like in Eq. (2.31) forpseudographs. As a by-produt we an also estimate the harateristi value of z ≈ (q + 1)/x1 ∼ 1/

√
Nin the integral over dz in Eq. (2.40). Let us onsider now the produt of integrals in Eq. (2.39) andtry to estimate the harateristi values of x1, . . . , x∞ and z1, . . . , zN in order to onvine ourselves thatintegrals over dx2, dx3, . . . an be negleted in the thermodynamial limit. Assuming that in the limit

N → ∞ the integral is dominated by a single saddle point, we must �nd the maximum of the funtion:
∞
∑

n=1

(

n(−1)n

2
x2
n +

∑

i

(−1)n

2n
z2n
i + xnz

n
i

)

−
∑

i

(1 + qi) ln zi. (2.42)The di�erentiation with respet to zi and xn gives the following set of equations:
∀n = 1, . . . ,∞ : (−1)nnxn +

∑

i

zni = 0, (2.43)
∀i = 1, . . . , N :

∑

n

(−1)nz2n
i + nxnz

n
i = qi + 1. (2.44)The integrals over dzi as well as the sums over qi fatorize, thus we an skip indies i beause harateristivalues of all zi's and all qi's are equal. This allows for solving these equations. We have

|z| ∼ 1√
N
, (2.45)

|xn| ∼ N1−n/2

n
, (2.46)so x1 ∼

√
N but xn's for higher n tend to zero in the thermodynami limit. This means that theonly signi�ant ontribution to Eq. (2.39) is from the integral over dx1. Therefore, Eq. (2.40) is a goodapproximation. We notie that in the limit N → ∞ this equation is idential to Eq. (2.30) whih wehad before for pseudographs. Thus the degree distribution Π(k) is again given by Eq. (2.36). Let us nowdisuss some onsequenes of that formula. First, for p(q) = 1 the generating funtion F (v) = ev and

Π(k) is Poissonian as it should be for equally weighted ER graphs. Seond, to get any desired degreedistribution Π(k) one should take p(q) = q!Π(q) and tune the average degree k̄ so that v0 = 1:
k̄ = k̄c ≡ F ′(1)/F (1). (2.47)In other words, the number of links and nodes must be arefully balaned to obtain a desired distribution

Π(k): 2L/N = k̄ =
∑

k kΠ(k) in the limit of large graphs. For instane, to get a power-law distributionone should take p(q) ∼ q!q−γ and adjust N,L arefully. A very important example is the distribution forBarabási-Albert model [1℄:
Π(k) =

4

k(k + 1)(k + 2)
(2.48)for k > 0 and Π(0) = 0, whih will be disussed in next setion. In order to obtain the ensemblewith Π(k) given by the above formula, one has to hoose p(k) = k! 4

k(k+1)(k+2) for k = 1, 2, . . . , and
p(0) = 0. The mean of the distribution (2.48) is k̄c = 2 so we have to take N = L to adjust k̄ to thisvalue. If L is too small, the degree distribution falls o� exponentially for large degrees as one an see18



from Eq. (2.36), beause then the saddle point v0 < 1. When one exeeds the ritial degree k̄c, thesaddle-point approximation is no longer valid4 and the behavior depends on whether we onsider simple-or pseudographs. For simple graphs, the degree distribution has no longer a power-law tail, but has amore ompliated form. We must remember that for simple graphs Eq. (2.36) is only an approximation.A very interesting behavior is observed for pseudographs. It has been shown [35℄ that a surplus of linksondenses on a single node, thus Π(k) has the same power-law distribution as for the ritial degree k̄c,but with an additional delta peak whose position moves linearly with the system size N . This is the samephenomenon as in the �Bakgammon ondensation� taking plae in the balls-in-boxes model [36℄. Weshall devote one setion of Chapter 3 to this problem, so now we will only mention that this is related tothe divergene of the series (2.32) when 2L/N exeeds the threshold k̄c. In fat, we shall see in Chapter3 that the partition funtion for the balls-in-boxes model is given by the same formula as Eq. (2.31) forpseudographs and therefore the model an be mapped onto the balls-in-boxes model.There is also another problem whih should be mentioned here. Equation (2.36) is valid only forin�nite sparse graphs, that is for N → ∞ and k̄ �xed. For �nite N , the node degree distribution Π(k)deviates from the limiting shape due to �nite-size orretions, whih are partiularly strong for fat-taileddistributions Π(k) ∼ k−γ . As a result of strutural onstraints, the maximal node degree annot be ∼ Nbut often it sales as some power of N smaller than one. Corretions to the sale-free degree distributionfor �nite networks will be extensively disussed in setion 3.1.Let us mention also a partiularly important subset of weighted graphs, namely weighted trees [37℄.Beause of their speial struture (no yles), many results an be obtained analytially. For instane,for trees with produt weights, similarly as for pseudographs one an alulate the expression for Π(k):
Π(k) =

p(k)vk−1
0

(k − 1)!F (v0)
, (2.49)where the generating funtion F (v) is now given by

F (v) =
∞
∑

q=1

p(q)
vq−1

(q − 1)!
. (2.50)Therefore to get a power-law degree distribution one has to take p(k) ∼ (k − 1)!k−γ . Similarly, one analulate orrelations [38℄:

ǫ(k, q) =
Π(k)Π(q)(k + q − 2)

2
, (2.51)and hene the assortativity oe�ient from Eq. (1.6), whih for trees with BA degree distribution reads

A =
2(69 − 7π2)

21 − 2π2
≈ −0.1384, (2.52)showing that this network is disassortative. Trees will be more throughly disussed in setion 2.3 in theontext of omparing the properties of equilibrated and ausal networks.At the end we shall mention that one an de�ne more ompliated weights than those given byEq. (2.24). A natural andidate for a weight to generate degree-degree orrelations on the network is thefollowing hoie [39, 40℄:

W (α) =

L
∏

l=1

p(kal
, kbl

), (2.53)where the produt runs over all edges of graph, and the weight p(ka, kb) is a symmetri funtion of degreesof nodes a, b at the endpoints of link. One an hoose this funtion to favor assortative or disassortativebehavior [39, 40, 41, 42, 43℄. Similarly, one an tune the weights to mimi some other funtional propertiesof real networks, like for example higher lustering [44, 45, 46, 47, 48℄.2.1.5 Monte Carlo generator of equilibrated networksOnly for a few models of random graphs, losely related to ER graphs, one an alulate almost allquantities of interest analytially. This is not the general ase for weighted networks like those presentedin the previous setion. In some ases it is useful to support the disussion with omputer simulations.Various methods have been proposed for generating random graphs, but usually eah of them works only4See the disussion of the ondensation in balls-in-boxes model in Se. 3.2.2.19



for one partiular model or its variations. In this setion we will desribe a very general Monte Carlomethod whih allows one to study a wide lass of random weighted graphs. The idea standing behindthis method is to sample the on�guration spae with probabilities given by their statistial weights.Unfortunately, there is no general and e�ient proedure that piks up an element from a large set withthe given probability. The most naive algorithm in whih one piks up an element uniformly and thenaepts it with the probability proportional to its statistial weight has a very low aeptane rate whenthe size of the set is large. Beause the number of graphs grows exponentially or faster5, one learly seesthat another idea must be applied. In this setion we will disuss suh an idea whih is derived from ageneral framework of dynamial Monte Carlo tehniques.The idea is to use a random walk proess, whih explores the set of graphs, visiting di�erent on�gu-rations with probability proportional to their statistial weights. Suh a proess is realized as a Markovhain (proess) whih has a unique stationary state with the probability distribution proportional to
W (α). The Markov hain is de�ned by speifying transition probabilities P (α → β) to go in one ele-mentary step from a on�guration α to β. The elementary step is a kind of transformation whih arriesover the urrent graph into another one. A onvenient way to store these probabilities is to introduea matrix P, alled a Markovian matrix, with entries Pαβ ≡ P (α → β). For a stationary proess, thetransition matrix P is onstant during the random walk. The proess is initiated from a ertain graph
α0 and then elementary steps are repeated produing a sequene (hain) of graphs α0 → α1 → α2 → . . . .The probability pβ(t+ 1) that a graph β is generated in the (t+ 1)th step is given by:

pβ(t+ 1) =
∑

α

pα(t)Pαβ , (2.54)whih an be rewritten as a matrix equation:
p(t+ 1) = Pτp(t), (2.55)where Pτ denotes the transpose of P and p is a vetor of elements pα. From general theory of Markovianmatries [49℄ we know that the stationary state, haraterized by the equation: p(t + 1) = p(t), orre-sponds to the left eigenvetor of P to the eigenvalue λ = 1. If the proess is ergodi, whih means thatany on�guration an be reahed by a sequene of elementary steps starting from any initial graph, andif the transition matrix ful�lls detailed balane ondition:

∀α, β : W (α)Pαβ = W (β)Pβα, (2.56)then the stationary state approahes the desired distribution: pα(t) → W (α)/Z for t → ∞. In otherwords, in the limit of in�nite Markov hain, the probability of ourrene of graphs beomes proportionalto their statistial weights and is independent of the initial graph. However, one must be areful whilegenerating relatively short hains. First of all, the probabilities an strongly depend on the initial state,and one has to wait some time before one starts measurements, to �thermalize� the system, i.e. to reah�typial� graphs in the ensemble. Seond of all, onseutive graphs in the Markov hain may be orrelated,espeially when the elementary step is only a loal update. Therefore one has to �nd a minimal numberof steps for whih one an treat measurements on suh graphs as independent.Among many possible hoies for probabilities Pαβ , whih lead to the same stationary distribution,we shall use here the well-known Metropolis algorithm [50℄, based on the following transition probability:
Pαβ = min

{

1,
W (β)

W (α)

}

. (2.57)The algorithm works as follows. For the urrent on�guration α one proposes to hange it to a newon�guration β whih di�ers slightly from α and then one aepts it with the Metropolis probability(2.57). Repeating this many times one produes a hain of on�gurations. The proposed elementarymodi�ations (steps) should not be too large beause then one risks that the aeptane rate would besmall. Therefore, all algorithms whih we propose below attempt in a single step to introdue only asmall hange to the urrent graph, by rewiring only one or two links.Let us try to apply these ideas to write a Monte Carlo algorithm for generating weighted graphs fromthe anonial ensemble. A good andidate for elementary transformation of a graph is rewiring of a linkalled �T-move� (see Fig. 2.6), beause it does not hange N and L, �xed in the anonial ensemble.We hoose a link ij and a vertex n at random, and rewire one of the endpoints of the link, say j, to n,forming a new link in whih replaes the old one ij. Sometimes it is easier to think about a rewiring ofan oriented link i → j to i → n, and simultaneously, j → i to n → i. If the link in is already present,or if n = i we rejet this move to prevent from forming a multiple- or self-onnetion. Then, eah move5For instane, for ER model it grows faster than exponentially whih results in a non-extensive entropy of graphs, seeSe. 2.1.3; for introdution on ounting graphs see also the referene [51℄.20
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Figure 2.6: The idea of �T-move�: a random link (solid line) is rewired from vertex j to a random vertex
n (left-hand side). Alternatively (right-hand side) a random, oriented link (dotted line) is rewired fromvertex of its end j to a random vertex n. The opposite link j → i is simultaneously rewired.is aepted with the Metropolis probability (2.57). In a speial ase of the ensemble of Erdös-Rényigraphs this probability is equal to one sine every graph has the same weight. So ER graphs an bealternatively obtained by simple rewirings of any other graph - we all this proess �thermalization�.The thermalization (homogenization) an be used to generate any ensemble of equilibrated networks. Infat, one ould de�ne equilibrated networks as graphs, whih an be produed in a proedure like this, ifweights do not depend on nodes' labels. This proess destroys any orrelations whih might be presentdue to ausal growth of the initial network.One an show [22℄ that, indeed, this algorithm produes labeled graphs with desired probabilities.We skip here the details. We would like, however, to point out two di�ulties whih an be enountered.First, it is not lear whether the ergodiity is not broken in the limit N → ∞ for models where the numberof on�gurations grows with N faster than exponentially. Seond, for some lasses of (unphysial) weightfuntions, a loal algorithm may not be ergodi. Consider for example weight funtionsW (α) of the form(2.24), with p(k) being a funtion whih is stritly positive on a support whih has a gap in the middle� an interval k ∈ (k1, k2), where p(k) = 0. In other words, there are no on�gurations in this ensemblewhih have a node with degree k ∈ (k1, k2). A single rewiring an hange degrees only by ±1, so it is notpossible to hange the value of k from k < k1 to k > k2 sine it would have to go through the forbiddenregion (k1, k2). In this ase, in order to avoid the di�ulty one would have to invent an algorithm whihis able to signi�antly hange k in a single move, to jump from one to another part of the support of theweight funtion p(k). We shall not, however, onsider suh unphysial weights p(k). For weights, whihare physially important, the support of the weight funtion is onneted. In this ase the aeptaneprobability reads

Pa(α→ β) = min

{

1,
W (β)

W (α)

}

= min

{

1,
p(kj − 1)p(kn + 1)

p(kj)p(kn)

}

= min

{

1,
w(kn)

w(kj − 1)

}

, (2.58)where we have introdued an auxiliary funtion:
w(k) =

p(k + 1)

p(k)
. (2.59)The degrees kj , kn are taken from the urrent graph α. In the omputer algorithm we prefer to use theweight funtion w(k) instead of p(k) to redue omputational ost and round-o� errors. In fat, w(k) anbe exatly alulated for many important p(k)'s, whih we are interested in. For example, to get the BAdegree distribution in simple graphs, aording to Eq. (2.48), we have to hoose p(k) = k!ΠBA(k) andhene

w(k) =
k(k + 1)

k + 3
, (2.60)while for trees, beause of the fator (k − 1)! in Eq. (2.49),

w(k) =
k2

k + 3
. (2.61)The rewiring proedure desribed above does not hange N and L. If we want to simulate weightedgraphs from the grand-anonial ensemble, we have to hoose another transformations whih hangethe number of links L. Natural andidates for suh transformations are two reiproal transformations:adding and deleting a link. In order to add a link we have to hoose two verties to whih the additionis attempted. To remove a link we pik up one link out of all L existing in the graph. These twotransformations must be arefully balaned in order to get graphs with orret probabilities. If the21
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Figure 2.7: The idea of �X-move�: two oriented links (dotted lines) ij and ln hosen in a random way arerewired, exhanging their endpoints. Then the opposite links (solid lines) are also rewired.frequeny of the two transformations is the same, then the aeptane probabilities for eah of them aregiven by [22℄
Padd(α→ β) = min

{

1, exp(−µ)
N2

2(Lα + 1)

W (β)

W (α)

}

, (2.62)and
Pdel(β → α) = min

{

1, exp(+µ)
2Lβ
N2

W (α)

W (β)

}

, (2.63)respetively. Here µ is the hemial potential for links, de�ned in Eq. (2.16) and hosen to obtain adesired average number of links6 〈L〉. As before, if we want to produe only simple graphs we musteliminate moves leading to self- or multiple onnetions. One ould modify the algorithm in many ways.For example, one ould, instead of piking up a link as a andidate for removing, pik up two nodesat random and if there is a link between them, remove it. Then the frations N2/2(L + 1) and 2L/N2would disappear from equations (2.62) and (2.63). This would not hange the probabilities of graph'sourrene, but it would a�et the aeptane rate. For sparse networks suh a modi�ed algorithm isworse than the previous one beause the hane that there is a link between two randomly hosen nodesis very small and for most of the time the algorithm would do nothing exept looking for links that anbe removed. On the other hand, the aeptane rate for the original algorithm is �nite for N → ∞ sinethen µ behaves as lnN and the fator eµ2L/N2 is of order 1.Let us onsider now a version of this algorithm suitable for the produt weights (2.24). The probabilityof aeptane of a new on�guration by adding or removing a link between ij reads:
min

{

1,
N2

2(L+ 1)
e−µw(ki)w(kj)

} for addition a link,
min

{

1,
2L

N2
eµ

1

w(ki − 1)w(kj − 1)

} for deleting a link,where L and ki, kj refer to the urrent on�guration and w(k) is given by Eq. (2.59).Finally, let us say some words about the generation of graphs from the miro-anonial ensemble.Inspired by the Maslov-Sneppen algorithm preserving node degrees, as a loal update we hoose simulta-neous rewirings shown in Fig. 2.7. We shall all this ombination �X-move�. At eah step of this algorithmone piks up two random links: ij and ln, and rewires them to in and lj. In ase of the Maslov-Sneppenalgorithm [32℄, the funtional weight is Wα = 1 and hene all rewirings are aepted. In the generalase, one an use this algorithm to generate graphs whose statistial weights depend for instane on thenumber of triangles, to get a high lustering oe�ient, or to produe some higher-order orrelationsbetween nodes [52℄. The motivation is similar to that given by Maslov and Sneppen, namely if one triesto determine relations between the abundane of strutural motifs and the funtionality of network, it isvery important to onstrut randomized networks whih ould serve as a benhmark.We desribed the algorithms presented here and their implementation in [53℄. Beause we often haveto do with sparse graphs, it is not needed to keep the whole adjaeny matrix in omputer memory. Thedata struture that we developed allows us to enode and simulate networks of size of order 106.2.2 Causal (growing) omplex networksIn the previous setion we disussed equilibrated networks, whih an be onstruted in a sort of thermal-ization or homogenization proess. Clearly for suh graphs, if they are labeled, a permutation of nodes'6For ompliated weights, when analytial alulations of the orrespondene 〈L〉 ↔ µ is impossible, one an tune µduring the simulation to obtain desired number of links. 22



labels leads to the same set of graphs. In this setion we shall disuss another kind of graphs, generatedin a proess of growth. A ommon feature of these graphs is that there is a natural labeling of nodeswhih orresponds to the order in whih they were added to the graph. We all this labeling �ausal�,sine it is always obvious whih node is an anestor of whih. The orresponding graphs will be alledausal networks. The ausality introdues a restrition on the number of ways in whih the graph anbe labeled. As we shall see, this restrition very strongly a�ets properties of typial networks in theensemble.In this setion we shall disuss some famous models of growing networks. These models are morepopular than equilibrated networks presented above and, indeed, they were �rst models reproduingmany properties of real network. Although in some models the rules governing the proess of growthmay look somewhat arti�ial, it is instrutive to study how methods of statistial physis an be appliedto ausal networks. Beause of the growing nature of these networks, the rate equation approah ispartiularly well suited to study them. We will see, however, that also the onept of statistial ensemblean be very helpful in order to understand some features of these networks.2.2.1 Models of growing networksAs a �rst example of growing network we shall disuss the Barabási-Albert (BA) model introduedin a very seminal paper [15℄. This model triggered enormous ativity in the �eld of omplex networks.Similar models were proposed in di�erent ontexts and disussed several times in the past (for review seee.g. [54℄). The model has two basi ingredients: growth and preferential attahment. The latter meansthat new nodes added to the system prefer to attah to nodes with higher degrees. In e�et, high degreesare further inreased and beome even higher7. The model is de�ned as follows. Starting from a ompletegraph with n0 nodes, at eah step a new node is introdued and joined to m previously existing nodeswith the probability proportional to the degree of the node to whih a new link is established. One aneasily program this proedure on a omputer, adding nodes one by one and attahing them aording tothe preferential attahment rule. There is also a slightly di�erent version of the algorithm, a more trikyone, whih instead of fousing on the nodes uses links as elementary objets. It is more e�etive, so let usshortly desribe it. Eah link ij is viewed in this algorithm as a ouple of direted links i→ j and j → i.In the algorithm one piks up at random a direted link and hooses the node whih is at the endpointof this link as a node to whih a new link is going to be attahed. The preferential attahment rule is inthis way simply realized, beause the number of links pointing onto a node with degree k is equal to k.After t steps of nodes' addition, the network onsists of n0 + t nodes and mt+ n0(n0 + 1)/2 edges. For
m = 1, the graph generated by this proedure onsists of trees planted on the initial graph. If the initialgraph is a tree, so is the whole graph.Later on we shall see that the degree distribution falls asymptotially as k−3. In the limit N → ∞the distribution reads [55℄

Π(k) =
2m(m+ 1)

k(k + 1)(k + 2)
Θ(k −m), (2.64)where Θ(x) is the step funtion: Θ(x) = 1 for x ≥ 0, Θ(x) = 0 for x < 0. By onstrution, nodes of degreesmaller than m are absent. The degree distribution (2.64) is in aordane with distributions observedfor some real networks like the itation network. The exponent γ = 3 annot be tuned in this version ofthe model. As we shall see below, a slight modi�ation of the attahment rule will do the job. The nextimportant property of the BA network is that the diameter grows as ∼ lnN , so it is a small-world. Thelustering oe�ient is rather small. For m = 1, C = 0 beause the graph is essentially a tree. For m > 1many triangles appear8, but their number is small in omparison to the number of onneted triples inthe limit N → ∞. There are obvious orrelations on BA networks between the age and the degree ofnodes: the older node is, the higher degree it has. This is an e�et of a pure growth in absene of anyrewiring of links. In fat, this age-degree orrelation is not observed in the WWW, for whih the modelwas originally designed, beause there are new web pages having sometimes more links than older ones.As mentioned, many re�nements have been introdued to the BA model to aount for some of theexperimentally observed fats. In partiular, one an make the power-law exponent tunable by a simplemodi�ation of the attahment rule as proposed by Dorogovtsev, Mendes and Samukhin [55℄. Here weshall refer to this model as to the DMS model9 or as to the BA model with initial attrativeness. Thealgorithm is similar to that for the BA model. The only di�erene is that now a new node hooses the7This is sometimes alled St. Matthew's e�et: �For unto every one that hath shall be given, and he shall have abundane:but from him that hath not shall be taken away even that whih he hath.� (Matthew XXV:29, KJV).8E.g. for m = 2 for eah new node one new triangle is also introdued.9There are also other models proposed by those authors alled DMS models in the literature.23



older one to whih it reates a link, with probability Ak, alled attahment kernel, proportional to itsdegree plus some onstant:
Ak =

k + a0
∑

i ki + a0
, (2.65)where k is the degree of the old node and a0 is alled initial attrativeness. The model an be solved inthe thermodynami limit [55℄. The degree distribution for m = 1 reads

Π(k) =
(2 + a0)Γ(3 + 2a0)

Γ(1 + a0)

Γ(k + a0)

Γ(k + 3 + 2a0)
, (2.66)that is Π(k) ∼ k−γ with γ = 3 + a0. The model an reprodue any power-law exponent larger than 2(a0 > −1), and therefore it an be adjusted to experimentally observed degree distributions for real-worldnetworks. One an summarize this part of the disussion by saying that DMS model beame very popularbeause of three important properties: i) it yields sale-free networks with tunable exponent γ, ii) thenetworks are small-worlds, iii) the model is easy to handle in the numerial and analytial treatment.Atually, DMS networks an be easily generated but not so easy as BA ones. The innoently looking term

a0 in the attahment kernel hanges the algorithm omplexity, beause one annot apply the trik withpiking up direted links at random instead of nodes. One has to work with nodes and hoose them witha probability hanging after eah step, whih inreases the omputational ost. Fortunately, it was shownin [56℄ that the model with m = 1 is equivalent to a model of growing network with re-diretion(GNR). The GNR network is onstruted as follows. Starting from some small initial graph like in theBA model, at eah time step one hooses a node i with equal probability from the set of existing nodes.Then one introdues a new node whih is attahed with probability 1 − r to i, and with probability r toits anestor10. With the hoie r = 1/(a0 + 2) the GNR model is equivalent to the DMS tree model withinitial attrativeness a0.One an onsider even more general attahment kernels than Eq. (2.65). For instane, one an assumethat Ak behaves asymptotially as kα for large k. When α < 1 that is for sub-linear kernels, the degreedistribution is exponentially suppressed [56℄. When α > 1, links tend to ondense on one or more nodes,depending on the value of α: for instane for α > 2 almost all links ondense on a single node. Thisis the �winner takes all� situation. We have mentioned a similar behavior in the previous setion whiledisussing pseudographs, but there only a �nite fration of links ondensed. The situation presented hereis more similar to the ondensation of balls on inhomogeneous networks whih will be disussed in setion3.2.2.2.2.2 Rate equation approahIn this subsetion we shall disuss rate equations and show how to use them to alulate asymptotidegree distribution for a growing network. We shall follow the approah developed in [56℄. First, forsimpliity we shall onsider BA model with m = 1, that is the ensemble of growing trees with linearattahment kernel. The quantity of interest is Nk(N), the number of nodes having degree k when thetotal size of the network is N . Assume that the initial graph onsists of two nodes joined by an edge.This means that initially we have Nk(2) = 2δk,1. For m = 1 the growth proess does not introdueyles, so the graph remains a tree. The assumption about the initial on�guration is not ruial but itsimpli�es alulations. At eah time step a new node is attahed to an old node with probability equal to
k/
∑

q qNq, where k is the degree of the old node. Beause the sum of all degrees gives 2L, this probabilityis simply k
2L . The proess of growth is random, Nk(N) may hange by 0 or 1. We an formally write:

Nk(N + 1) = Nk(N) + ξ(k,N), (2.67)where ξ(k,N) is a random variable whih may assume values 0, 1. Having the probability distribution of
ξ we ould generate ξ(k,N) at any time step N and simulate the proess of growth to get Nk(N). Butwe are interested not in a partiular distribution of degrees for one network, but in �typial� propertiesof all BA graphs. Therefore we should onsider the average 〈Nk(N)〉 rather than Nk(N). The average isover an ensemble of all graphs of size N whih an be generated by the growth proess. One an show[55℄ that this average exists in the limit N → ∞ and that the system self-averages, whih means that for
N → ∞ the averages over the ensemble are equal to the averages over one network piked up from thisensemble. Taking the average of both sides of Eq. (2.67) we get

〈Nk(N + 1)〉 = 〈Nk(N)〉 + 〈ξ(k,N)〉 . (2.68)10Beause the network is growing (ausal), one an always deide whih node is older and �x the anestor-desendanthierarhy. 24



The form of the average of the random variable ξ an be dedued from the proess of growth. Let usfous at some node i having degree k. As a result of an addition of new node to the network, i an get anew link with probability k/2L. Thus the average hange of 〈Nk(N)〉 will be −〈Nk(N)〉 k/2L beause ithappens only when the new node hooses one of Nk(N) possible nodes with degree k. But 〈Nk(N)〉 analso inrease by 〈Nk−1(N)〉 (k− 1)/2L if the new node onnets to any node with degree k− 1. The lastontribution to 〈ξ〉 omes from addition of a new node with degree k = 1 and is equal to δk,1. Thus thefull equation for the rate of hange of 〈Nk(N)〉 reads:
〈Nk(N + 1)〉 = 〈Nk(N)〉 + δk,1 +

k − 1

2(N − 1)
〈Nk−1(N)〉 − k

2(N − 1)
〈Nk(N)〉 , (2.69)where we take advantage of the fat that for trees L = N − 1. The equation is exat for any N , not onlyin the thermodynami limit, and ould be solved for 〈Nk(N)〉. Using this equation one an also alulate

Π(k) ≡ 〈Nk(N)〉 /N , i.e. the degree distribution averaged over the ensemble of BA tree graphs. As weshall see it is not an easy task (see Chapter 3, Se. 3.1.2). It an be simpli�ed by negleting �nite-sizeorretions in the limit of large networks, in whih ase the degree distribution an be alulated bysubstituting 〈Nk(N)〉 = NΠ(k) and assuming that Π(k) tends to a stationary state11. In this ase onegets:
Π(k) = δk,1 +

k − 1

2
Π(k − 1) − k

2
Π(k) +O(1/N). (2.70)In the thermodynamial limit the term O(1/N) an be negleted. Rearranging this equation:

(k + 2)Π(k) = (k − 1)Π(k − 1) + 2δk,1, (2.71)one immediately obtains
Π(1) = 2/3, (2.72)
Π(k) =

k − 1

k + 2
Π(k − 1), ∀k > 1, (2.73)and by iterating Eq. (2.73) one eventually arrives at the following degree distribution for k ≥ 1:

Π(k) =
4

k(k + 1)(k + 2)
. (2.74)Following [56℄, let us apply the same method for a general attahment kernel Ak. Now, the probabilitythat a new node will be attahed to the older one with degree k, is Ak/A(N) whereA(N) is a normalizationoe�ient:

A(N) =
∑

k

AkNk(N). (2.75)In the limit N → ∞, all Nk ∼ N and thus we an assume that A(N) ≈ Nη where η is some onstantto be determined later. Proeeding exatly as above for pure BA model, we get the rate equation in theform:
Π(k) = δk,1 +

Ak−1

η
Π(k − 1) − Ak

η
Π(k), (2.76)whih an be solved with respet to Π(k):

Π(k) =
η

Ak

k
∏

j=1

(

1 +
η

Aj

)−1

. (2.77)The parameter η an be obtained from the normalization of the degree distribution: ∑k Π(k) = 1. If wenow assume a shifted linear kernel like in the DMS model: Ak = a0 + k, we �nd
Π(k) =

η

a0 + k

a0 + 1

a0 + 1 + η
· · · a0 + k

a0 + k + η
=

η

a0 + k

Γ(a0 + k + 1)/a0!

Γ(a0 + k + η + 1)/(a0 + η)!
, (2.78)and η = 2 + a0 as follows from A(t) =

∑

k(k + a0)Nk(N) = 2L+Na0. Inserting this into Eq. (2.78) weend up with Eq. (2.66). It redues to the BA degree distribution (2.74) for a0 = 0, that is for the purelylinear attahment kernel. In �gure 2.8 we show plots of Π(k) alulated analytially using Eq. (2.78)25
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Figure 2.8: Left: Degree distribution for pure BA model with m = 1, n0 = 2 for networks of di�erentsizes. Solid lines from left to right: N = 1000, 2000, 4000, averaged over 106 generated networks. Cirles:
Π(k) for a single network with N = 107. As N grows, plots approah theoretial distribution Π(k) ∼ k−3.One also sees that averaging over the ensemble is (up to �nite-size e�ets) equivalent to averaging overone large network (self-averaging). Right: plots of Π(k) for DMS models with N = 106 and various a0,ompared to the theoretial distributions (2.66). The plots orrespond to a0 = 2.1 (the smallest slope),
a0 = 3 and a0 = 4 (the largest slope). All results are averaged over 100 networks generated in the GNRmodel, equivalent to the DMS model.and measured in numerial simulations of networks generated by the GNR version of growing networkalgorithm for various a0.The same method allows one to determine Π(k) for sub- and super-linear kernels, ited in the previoussetion, or to alulate degree distribution for non-tree growing networks [55, 57℄. It an also be used to�nd degree-degree orrelations [56℄ by writing a rate equation for Nk,q, the number of nodes with degree
k attahed to anestor nodes of degree q. The exat result for BA is fairly ompliated, but in the limit
k, q → ∞ with y = q/k kept �xed, it simpli�es to

Nk,q ∼= Nk−4 4y(y + 4)

(1 + y)4
. (2.79)This funtion has a maximum at y ≈ 0.372 whih means that the anestor node's degree is approximately

37% of its desendant. The orrelation funtion ǫkq de�ned in Se. 1.3 and alulated from the formula:
ǫ(k, q) =

Nk,q +Nq,k
L

, (2.80)does not fatorize: ǫ(k, q) 6= ǫr(k, q) whih means that the network is orrelated. A similar behavioris observed for shifted attahment kernels. The assortativity oe�ient A de�ned in Eq. (1.6) an bealulated for pure BA model. From Eq. (41) in [56℄, and Eq. (2.80) we obtain
ǫ(k, k) =

2(5k2 − 3k − 2)

k2(1 + k)2(4k2 − 1)
. (2.81)Using Eq. (1.6) after some tedious but straightforward alulations we �nd:

A =
33 − 24 ln 4

42 − 4π2
≈ −0.1075, (2.82)whih stands in a very good agreement with numerial simulations. This indiates that the BA growingtree network is disassortative.Many improvements of BA growing network models have been proposed (for a review, see e.g. [4℄). Thegrowing BA network an be used as an initial on�guration for the algorithms, like those desribed before,to generate sale-free networks with some features enhaned [6℄. In this way one an also extrapolatebetween ausal and equilibrated networks.11One an show that Nk's from Eq. (2.69) grow as ∼ N [56℄ for large N and therefore Π(k) has a stationary state in thethermodynamial limit. 26
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1 33Figure 2.9: Planted rooted trees of size N = 1, 2, 3. All ausal labellings are surrounded by dashedretangles.2.2.3 Statistial ensemble formulation of growing networksAlthough many properties of growing networks an be understood using rate equations, sometimes it isonvenient to introdue the ensemble of ausal graphs and alulate desired quantities from the partitionfuntion. As mentioned, suh an ensemble annot be thought as an ensemble with the Gibbs measure,in the usual statistial sense, but merely as an ensemble of networks whih an be obtained in a growthproess, if this proess is terminated at some moment of time. In this subsetion we shall de�ne suh anensemble for trees with the produt weight (2.24). As we shall see, the model is on the one hand solvableand on the other hand it exhibits non-trivial behavior. In partiular, we shall be able to quantify thee�ets of ausality.Beause a tree with N nodes has L = N − 1 links, we shall de�ne the anonial partition funtionwhih depends only on N :
Z(N) =

1

N !

∑

α∈lct(N)

n(α)p(k1) · · · p(kN ), (2.83)where the sum runs over all labeled ausal tree graphs. The ausal ordering of nodes' labels selets arelatively small fration of all possible labeled trees. The alulation of Eq. (2.83) is muh simpler forplanted rooted trees, i.e. trees with an additional link (a stem) attahed to one of its nodes. The stemats as an additional link whih marks one node of the tree and inreases its degree by one. Beause onlyone node is marked, in the thermodynami limit ensembles of trees and planted rooted trees have roughlythe same properties. In �gure 2.9 graphs with N = 1, 2, 3 are skethed. Following [37℄ we shall derivea reursion relation for Z(N). First, we observe that every tree of size N + 1 an be onstruted fromtrees of sizes N1, . . . , Nq where∑q
i=1Ni = N , by attahing their stems to a ommon node (see Fig. 2.10).This new node is attahed to a new ommon stem. Denoting by n(N) the number of di�erent labellingsfor the set of trees of size N we have

n(N + 1) =
N !

N1! · · ·Nq!
1

q!
n(N1) · · ·n(Nq). (2.84)The origin of fatorials is the following. The whole tree has N + 1 labels, but the smallest label mustbe attahed to the root beause of the ausality. The remaining N labels an be distributed arbitrarily.All Ni! permutations of Ni labels of a subtree are undistinguishable and thus they give the same graph.To avoid overounting one divides by Ni!. This leads to the multinomial fator. In addition, q subtreesan be permuted in q! possible ways giving the same labeled graph, thus we have to divide by q!. Thefuntional weight W (N + 1) for the set of ompound trees also fatorizes:

W (N + 1) = p(q + 1)W (N1) · · ·W (Nq). (2.85)Notie that the new node has degree q + 1 beause the root is ounted as a link. The partition funtion27
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Z(N + 1) =

1

(N + 1)!

∞
∑

q=1

∑

N1,...,Nq

δN,N1+···+Nq

N !

N1! · · ·Nq!
1

q!
n(N1) · · ·n(Nq)

× p(q + 1)W (N1) · · ·W (Nq)

=
1

N + 1

∞
∑

q=1

p(q + 1)

q!

∑

N1,...,Nq

δN,N1+···+Nq

q
∏

i=1

Z(Ni), (2.86)where Z(N) appears on both sides. The sum goes over all subtrees 1, 2, . . . , q of sizes N1, . . . , Nq withthe only onstraint given by the delta funtion. The onstraint an be deoupled by introduing agrand-anonial partition funtion:
Z(µ) =

∞
∑

N=1

Z(N)e−Nµ, (2.87)whih is just a generating funtion for the anonial partition funtions Z(N). Here µ is the hemialpotential but ontrary to the previous de�nition (2.16), it ontrols the average number of nodes, notlinks12. Multiplying both sides of Eq. (2.86) by (N + 1)e−(N+1)µ and summing over N = 1, . . . ,∞ weget:
∞
∑

N=2

NZ(N)e−Nµ = e−µ
∞
∑

q=1

p(q + 1)

q!

(

∞
∑

Ni=1

e−µNiZ(Ni)

)q

. (2.88)If we add the term Z(1)e−µ to both sides of this equation, the left-hand side beomes just a derivative of
−Z(µ) with respet to µ, while the right-hand side is a sum over q extended to the range q = 0, . . . ,∞,whih additionally inludes the term for q = 0. Thus we get

Z ′(µ) = −e−µF (Z(µ)), (2.89)where F (x) is the generating funtion for the distribution p(k) like in Eq. (2.50):
F (x) =

∞
∑

q=0

p(q + 1)
xq

q!
. (2.90)This series may have a �nite or in�nite radius of onvergene, x0. The equation (2.89) an be integratedover dµ. This yields

e−µ(Z) =

∫ Z

0

dx

F (x)
, (2.91)and beause13 F (x) > 0 for x > 0 and F (x) → ∞ for x ≥ x0, the integral is bounded from above. Henethe hemial potential µ(Z) is bounded from below: µ→ µ0 as Z → ∞. This means that Z as a funtion12Beause L = N − 1, the di�erene is in fat meaningless.13We an exlude the trivial ase when all p(q)'s are zero.28
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µ0 = − ln

∫ x0

0

dx

F (x)
. (2.92)From de�nition of the partition funtion (2.87) we have that Z(N) shall grow as ∼ eµ0N or faster.We assume now that the ensemble of trees is normal in the statistial-thermodynamial sense, that is

Z(N) ∝ eµ0N . As we have seen, this is not true for simple graphs, but the number of ausal trees growsonly as (N − 1)! [35℄ and not as ∼ (N2)! for graphs. Therefore, many quantities as for instane degreedistribution an be obtained from the ritial value µ0. For example, aording to Eq. (2.35) the degreedistribution reads
Π(k) = p(k)

∂µ0

∂p(k)
=

p(k)

(k − 1)!

∫ x0

0
dx xk−1

F 2(x)
∫ x0

0
dx
F (x)

. (2.93)Thus, similarly as for simple graphs, by tuning p(k) one an obtain any desired degree distribution. It is,however, not as trivial as in ase of Eq. (2.36) beause the dependene on F (x) is now more ompliated.Some interesting distributions were investigated in [37℄. For instane, with the hoie p(k) = (k−1)!, thegenerating funtions reads F (x) = (1 − x)−1 and has the radius of onvergene x0 = 1. The integrals in(2.93) an be done analytially. The result is
Π(k) =

4

k(k + 1)(k + 2)
, (2.94)so one reovers the BA degree distribution. We an show that, indeed, ausal trees with the produtweight

W (α) = (k1 − 1)! · · · (kN − 1)! (2.95)form the same ensemble as BA growing trees. To this end, let us onsider a set of all ausal trees α whihfor a given degree sequene k1, . . . , kN have the statistial weight W (α) given by Eq. (2.95). Imaginealso that we have a Markov proess whih generates suh trees. First, we see that the number of possibleausally labeled trees in this set is obviously the same as in the BA model. We have to hek whetheralso the statistial weights are the same in both ases. Imagine that we take a graph α with N nodeswith degrees k1, . . . , kN and attah a new node by linking it to a node n. We obtain a new on�guration
β, whih has now N + 1 nodes with degrees k1, . . . , kn + 1, . . . , kN , 1. The transition probability α → βfor a proess whih has a stationary distribution (2.95) is

P (α→ β) ∝ W (β)

W (α)
=

(k1 − 1)! · · ·kn! · · · (kN − 1)! · 1
(k1 − 1)! · · · (kN − 1)!

= kn (2.96)and we see that it is idential to that for linear attahment kernel in the BA growth proess. In onlusion,this shows the equivalene of the two approahes.The formulation of the BA model of growing networks via statistial ensemble an be used to alulatedegree-degree orrelations or the average distane 〈r〉 between any two nodes [37℄. For instane, it anbe found that 〈r〉 ∼= (1/2) lnN , that is the BA network really displays the small-world phenomenon.2.3 Causal versus equilibrated networksSo far we have disussed equilibrated and ausal networks separately. We have shown that for bothlasses some properties of networks an be essentially the same, as for instane the power-law degree29
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Figure 2.12: The distane distribution G(r) for unweighted equilibrated trees (irles), sale-free equili-brated trees (diamonds) and sale-free ausal trees (squares) of size N = 1000. S-F ausal trees are theshortest.distribution. Now we shall ompare these two ensembles and see that although Π(k) an be idential inthe thermodynami limit, some other harateristis of the network topology are di�erent for ausal andequilibrated graphs. As shown in [35℄, ausal trees form only a small subset of all trees. The same is truefor simple graphs. The fration of ausally labeled trees among all labeled trees is only ∼ N3/2e−N . Sothe hane of piking up at random a ausal tree from the set of all trees vanishes when N grows. Weshall show that geometrial properties of typial trees in this subset are quite di�erent from those in thewhole set.Let us �rst onsider the ensemble of unweighted equilibrated trees and the orresponding ensemble forausal trees. Here �unweighted� means that all trees have the same funtional weight equal to one. We annow alulate some geometrial quantities for trees in the �rst and in the seond ensemble. An exampleof suh a quantity is the average distane 〈r〉. In fat, one an alulate it analytially [37, 56, 58, 59, 60℄.For equilibrated trees it is
〈r〉 ∼

√
N, (2.97)whih means that the fratal dimension of typial equilibrated trees is equal to 2. These trees are thereforerather elongated and ertainly are not small-worlds so abundantly observed in nature. On the other hand,for ausal trees,

〈r〉 ∼ lnN, (2.98)hene the fratal dimension is in�nite. This is beause most of nodes onentrate around the oldest node.A similar observation was made for weighted trees with BA degree distribution [35℄. An even betterinsight into geometrial properties of trees (or graphs) is provided by the distribution G(r) of distanes
r between all pairs of nodes:

G(r) =

〈

1

N2

∑

i,j

δr,r(ij)

〉

. (2.99)Here r(ij) is the length of the shortest path between two nodes i, j. The average distane is the mean ofthis distribution: 〈r〉 =
∑

r rG(r). In �gure 2.12 we present a omparison of G(r) for equilibrated andausal trees of the same size. Causal trees were generated using the BA model while for equilibratedtrees we used the Monte Carlo algorithm desribed in setion 2.1.5. The weights p(k) = 4(k− 1)!/(k(k+
1)(k+2)) were hosen aording to Eq. (2.49) to get the same degree distribution as in the BA model. InFig. 2.13 we see that indeed both types of trees have the same Π(k), so one annot easily distinguish towhih ensemble the given tree belongs, by only measuring14 Π(k). But one easily sees in Fig. 2.12 thatthe ausal trees are muh shorter than the equilibrated ones. If we assume that the average distanesales for equilibrated trees like

〈r〉h ∼
√

N/ lnN, (2.100)and for ausal trees:
〈r〉c ∼ lnN, (2.101)14We shall see in the next hapter that this statement is true only in the thermodynami limit. For any �nite N thereare �nite-size orretions, whih are di�erent for both ensembles. To see a di�erene oming from the �nite-size orretionone has to have muh better statistis than in �gure 2.13. 30
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Figure 2.13: The degree distribution for ausal (diamonds) and equilibrated (irles) sale-free treesmeasured in Monte Carlo runs for N = 1000. The solid line stands for theoretial Π(k) = 4
k(k+1)(k+2) .
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Figure 2.14: Left: G(r) for equilibrated trees plotted in the resaled variable: x = r/
√

N/ lnN fordi�erent sizes N = 500, 1000, 2000, 4000. Right: the same quantity for ausal trees, for x = r/ lnN .Continuous lines are given by Eqs. (2.102) and (2.103).we an plot urves G(r) for di�erent N in the resaled variable x ≡ r/ 〈r〉 and observe that they ollapseto some harateristi urves but di�erent for eah of the two ensembles (see Fig. 2.14). The funtion
Gh(x) for equilibrated trees is well approximated by

Gh(x) = Ax exp(−Bx2/2), (2.102)while for ausal trees by
Gc(x) = A′ exp(−(x− x̄)2/B′), (2.103)with some parameters A,A′, B,B′, x̄ �tted to data. So again, the average node-node distane is smallerfor the ausal trees than for the equilibrated ones with the same degree distribution. The e�et isqualitatively the same when one onsiders simple graphs instead of trees. Thus the ausality enhanesthe small-world e�et by inreasing the relative weight of graphs with lusters of nodes around the oldestverties.There are many other di�erenes between the ausal and equilibrated networks. We shall give onemore example showing the di�erene in degree-degree orrelations in both types of trees. A quantitywhih is ommonly used to study these orrelations is the average degree k̄nn(k) of the nearest neighborsof a node with degree k, de�ned in Se. 1.3 and expressed through Eq. (1.5). For unorrelated graphs itis ǫr(k, q) = kqΠ(k)Π(q)/ 〈k〉2 and thus

k̄nn(k) =

〈

k2
〉

〈k〉 , (2.104)whih gives a onstant value k̄nn = 1 + k̄ for maximally random graphs in the ER model. In general ase31
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Figure 2.15: Plots of k̄nn(k) for ER random graphs (diamonds), random trees with BA degree distribution(squares) and ausal BA trees (irles). Both ausal and random trees are disassortative, but they di�erin approahing k → ∞. The desent of experimental urves for large k is aused by �nite-size e�ets.Theoretial urves (solid lines) are alulated from Eqs. (2.105) and (2.106).for equilibrated trees with an arbitrary degree distribution it an be shown [38℄ that
k̄nn(k) = 2 +

1

k

(〈

k2
〉

− 4
)

. (2.105)This result di�ers from the orresponding one for ausal trees. For instane, for ausal trees with BAdegree distribution [61℄,
k̄nn(k) =

〈

k2
〉

2

(

1

2
+

1

k

)

. (2.106)The seond moment 〈k2
〉 depends on the size N and an be alulated for growing BA trees [62℄:

〈

k2
〉

= (2 − 2/N)H(N − 1). (2.107)Here H(n) =
∑n

i=1 1/i is the harmoni number. The same formula performs well for random BA trees.In �gure 2.15 we plot k̄nn(k) for BA ausal and equilibrated graphs, and also for ER graphs. FromEq. (2.105) we get k̄nn(k) → 2 when k approahes in�nity, while for ausal trees the limiting value isproportional to the seond moment of the degree distribution, and thus diverges for N → ∞. This meansthat the a�nity of nodes with higher degrees and their tendeny to luster together grow with the sizeof tree. This is another argument supporting the onjeture that ausal trees are more ompat than theorresponding equilibrated ones.

32



Chapter 3Appliations to modeling omplexnetworksIn this hapter we present some further appliations of the mathematial methods developed so far.First we shall quantify �nite-size e�ets in networks. Usually, while disussing networks one alulatesquantities of interest in the thermodynami limit N → ∞. As we will show suh a proedure maylead to negleting some important e�ets, whih are seen for �nite networks. In partiular, the node-degree distribution exhibits for �nite N apparent deviations from the limiting distribution. We will �ndan expliit form of �nite-size orretions to the sale-free behavior for growing networks and talk overorretions for homogeneous graphs. A seond problem whih shall be disussed in this hapter onernsa very important lass of phenomena whih desribe the dynamis of statistial proesses on networks.On the example of a zero-range proess we will show the usage of tehniques developed in the previoushapter.3.1 Finite-size e�ets in networksIn the preeding hapter we disussed some popular models of networks, for whih we determined degreedistribution, lustering oe�ient, diameter et., in the limit of in�nite networks. The derivation of exatanalytial result was possible beause in this limit strutural onstraints, like for example that on thesum of degrees, beome less important and some of them loose their virtue at all. For instane, wementioned that in the thermodynami limit the anonial ensemble for homogeneous graphs with �xed Lis equivalent to the grand-anonial one where L an in priniple �utuate1. However, it is not the asefor �nite N and one has to inorporate the e�et of �nite-size onstraints into alulations.One must be very areful while omparing models solved in the thermodynami limit to real-worldnetworks. For �nite N , some loal quantities like node degrees are bounded from above. There are alsosome e�ets resulting from network's features whih are rare but an signi�antly hange the piture forsmall graphs. For example, it is known that in many models, as for instane in the ER model, largegraphs are essentially trees, beause the average number of yles of �nite length is onstant and doesnot depend on the network size N . On the other hand, for smaller graphs, short loops play an importantrole. Their presene shapes the network and strongly a�ets its global properties.In next setions we shall disuss one type of �nite-size e�ets, namely that whih is related to theappearane of a uto� in the degree distribution of �nite networks. We will present our reent �ndingsfor various graphs and ompare them to those from the literature.3.1.1 Cuto� in the degree distributionAs we have pointed out in Se. 1.3, for any �nite network the power-law behavior of the degree distribution
Π(k) an hold only for values of k signi�antly smaller than N . Both experimental data and theoretialmodels of sale-free networks indiate that the behavior of Π(k) for k ≫ 1 for a �nite network exhibitstwo regimes: below some kmax it follows the power-law behavior as in an in�nite network while above
kmax it displays a muh faster deay. The harateristi degree kmax whih separates these two regimesis alled a uto�. Intuitively, the uto� omes about due to the fat that the overall number of linkspresent in a �nite, non-degenerated graph is restrited and so is also the degree of eah node. Thus1We have shown this expliitly for equally weighted random graphs. A more general situation is onsidered in [18℄.33



for any �nite network the power-law behavior of the degree distribution is trunated. In onsequene,many quantities alulated on �nite networks signi�antly di�er from their ounterparts derived in thethermodynami limit. One an see this e�et for example when one alulates perolation thresholds forstatistial systems on networks, like for instane those desribing infetion spreading for real diseases oromputer viruses.Many attempts were undertaken to estimate the position of the uto� for di�erent sale-free networks,most of them onentrated on sparse networks where the average degree k̄ is �xed. This restrits thelass of distributions Π(k) to those whih have a �nite mean value, and the power-law tail exponent tothe range γ > 2, whih is indeed observed for real networks.Artile α for 2 < γ < 3 α for γ > 3(a) [63℄, homog. simple graphs 1/(5 − γ) * 1/2 *(b) [64℄, homog. simple graphs 1/2 * 1/(γ − 1) *() [65℄, unorrelated networks 1/2 1/(γ − 1)(d) Pseudographs 1/(γ − 1) 1/2(e) [66℄, growing trees 1/(γ − 1)(f) [34℄, homog. trees 1/(γ − 1)
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Table 3.1: Some results for the exponent α in the uto� kmax ∼ Nα. A star (*) denotes two inonsistentpreditions. By pseudographs we understand graphs with self- and multiple-onnetions with the partitionfuntion (2.31), for whih orretions to the degree distribution (2.36) an be found by observation thatit is equivalent to so alled balls-in-boxes model [36℄, and alulated in the limit of large but �nite N[67℄. In �gure on the right-hand side we ompare di�erent exponents graphially. Left axis: kmax for thenetwork of size N = 1000, right axis: the value of α.In general, the position of the uto� kmax sales as Nα for large N with an exponent α < 1. Thevalue of the exponent depends on the type of network. In table 3.1 we ollet some values α alulatedfor S-F graphs of various type, together with referenes to the original papers where the quoted valueswere derived. The exponent α is alulated as a funtion of the exponent γ in the power-law tail ofthe underlying degree distribution. In the disussion of S-F networks one should di�erentiate betweenequilibrated and growing networks, and simple graphs, pseudographs and trees. Note, however, that for
γ = 3, α = 1/2 in all ases. The value γ = 3 is in a sense marginal beause it separates the regime ofanomalous �utuations for γ < 3 and of normal �utuations for γ > 3. In the former ase 〈k2〉 is in�nitein the limit N → ∞ while in the latter one it is �nite.Let us make some remarks on the results in the table. First, the result (a) has been found reentlyin [63℄ in the statistial ensemble approah. It is in disagreement with the results (b). The authors [63℄laim that (b) gives only an upper bound on the value of the exponent α for 2 < γ < 3. Seond, thesaling for trees seems to be the same for growing (e.g. the BA model) and equilibrated ones. Third,equilibrated pseudographs have di�erent uto�s than simple graphs or trees. Fourth, the result () appliesonly to hypotheti unorrelated graphs with no orrelations between degrees of nearest neighbors. Any�nite network has ertain orrelations of suh type, simply beause of global onstraints like that on thesum of degrees oming from the �xed number of links L. Therefore, as we have mentioned in Chapter2, the two-point orrelation funtion ǫ(k, q) 6= ǫr(k, q) even if we do not introdue orrelations expliite.For instane, Π(N − 1) an be non-zero for simple graphs but then it is impossible to pik a link joiningnodes both of degree k = N − 1 as it would stem from Eq. (1.4). The authors [65℄ are aware of this e�etand onlude that for assortative networks the uto� should be smaller than the one predited in table3.1 while in ase of disassortativity it should be larger.The results in the table were obtained with the help of di�erent methods. For homogeneous networksmany of them were based either on some simple probabilisti arguments or extreme values statistis.Those methods allow one to determine the uto� but not the shape of the funtion giving the �nite-sizeorretion to the degree distribution. For growing networks, however, the shape of the orretions anbe found. In [66℄ the BA model of growing tree network has been solved for �nite N . The authors havealulated the mean number of nodes of a given degree for the network of size N and dedued the formof the orretion to the degree distribution for the pure BA model with γ = 3. In the next setion weshall present a more general method whih also applies to other growing networks and we shall use it todetermine the form of the uto� funtion. In the last setion we shall present Monte Carlo simulations ofnetworks whih allow for the estimation of the uto� funtion and the exponent α, and we shall ompare34



the results to those in table 3.1.3.1.2 Growing networksHere we would like to present the method of determining of the uto� funtions for growing networks.We shall explain it for the BA growing networks with initial attrativeness [63℄ desribed in Se. 2.2.1.Some of results presented here were obtained in Ref. [66℄. However, our approah is di�erent and allowsfor solving more sophistiated variants of the model. Before we start, let us give some key points of themethod here. We begin with the rate equation for the average number of nodes Nk(N) of a given degree
k. The average is taken over the anonial ensemble of growing trees as in Se. 2.2.2. The solution ofthe rate equation in the limit of large N gives, up to a normalization onstant, the degree distribution
Π∞(k) for the in�nite network.For a �nite network, we de�ne Π(k) as a produt of the limiting degree distribution Π∞(k) and auto� funtion v(k,N) giving �nite-size orretions. The reursion equation for this funtion an beobtained from that for Nk(N). The next ingredient of the method is to onsider moments of the uto�funtion. One an derive reursive equations for the moments from the reursion relations for v(k,N). Theequations an be solved reursively and one an derive expliit asymptoti expressions for the momentsfor su�iently large but �nite N . The knowledge of all moments makes it possible to reonstrut theleading behavior of the uto� funtion v(k,N). This is the sketh of the method whih we shall explainbelow in details. Although the idea is very simple, its implementation leads to quite ompliated andlengthy alulations whih we omit here, referring the reader to the original paper [62℄.We start from the BA tree model with m = 1, a0 = 0 and thus γ = 3. Like in Se. 2.2.2, as an initialon�guration we take the graph with n0 = 2 nodes joined by a link (a dimer on�guration), therefore
Nk(2) = 2δk,1. At eah time step a new node is added and onneted to one of N existing nodes in thesystem, with the probability proportional to the number of the preexisting links of the orrespondingnode, leading to a new network with N + 1 nodes. Aording to Eq. (2.69), the rate equation for theaverage number Nk(N) has the form:

Nk(N + 1) = Nk(N) + δk,1 +
k − 1

2(N − 1)
Nk−1(N) − k

2(N − 1)
Nk(N), (3.1)where, for brevity, we have omitted the angle brakets denoting the average. The origin of all terms hasbeen already explained in Se. 2.2.2. This equation is exat for any N . In the limit of N → ∞ it has asolution given by Nk(N) ≈ NΠBA(k), where

ΠBA(k) =
4

k(k + 1)(k + 2)
(3.2)is the degree distribution in the BA model. Here we are, however, interested in the general solution for

Nk(N) ≡ NΠ(k,N), with Π(k,N) being the degree distribution for a �nite network. It is onvenientto split Π(k,N) into the produt of the known funtion ΠBA(k) and an unknown funtion v(k,N)giving �nite-size orretions. With the substitution Nk(N) = ΠBA(k)v(k,N), the equation (3.1) an berewritten in terms of v(k,N):
v(k,N) =

3

2
δk,1 +

2 + k

2(N − 2)
v(k − 1, N − 1) − 4 − 2N + k

2(N − 2)
v(k,N − 1). (3.3)Multiplying now both sides of Eq. (3.3) by kq and summing over k = 1, . . . ,∞ we get

mq(N + 1) =
1

2N

(

3 +

q−1
∑

i=0

cqimi(N) + (2N + q + 1)mq(N)

)

, (3.4)where de�ne moments mq(N) for the distribution v(k,N) as follows:
mq(N) =

1

N − 1

∞
∑

k=1

kqv(k,N). (3.5)The normalization onstant 1/(N − 1) has been hosen for the later onveniene. The initial onditionreads
mq(2) = 3, (3.6)35



for all q as an be found for the initial on�guration. The oe�ients cqi are given by:
cq0 = 3, and cqi = 3

(

q

i

)

+

(

q

i− 1

) for i > 0. (3.7)The equation (3.4) an be solved reursively starting from the lowest moments m0,m1,m2, . . . . Fromexpressions for the �rst moments we an infer that the general solution has the form:
mq(N) =

1

Γ(N)

q+1
∑

i=0

Bqi
Γ(2 + i/2)

Γ(N + i/2), (3.8)with some oe�ients Bqi, yet unknown. The equation for oe�ients Bqi an be found by inserting(3.8) into Eq. (3.4). For large N , the leading behavior of mq(N) is ontrolled by the term proportionalto Bq,q+1:
mq(N) ≃ Bq,q+1

Γ [N + (q + 1)/2]

Γ(N)Γ(2 + (q + 1)/2)
≃ N

q+1
2 Aq, (3.9)with Aq ≡ Bq,q+1/Γ((5+ q)/2). Eah two onseutive moments mq+1 and mq di�er by a prefator N1/2,so learly the uto� funtion must have the form:

v(k,N) ≃ Nw(k/
√
N), (3.10)where w(x) is a universal (independent of N) uto� funtion having moments equal to Aq:

Aq =

∫ ∞

0

dxw(x)xq . (3.11)Therefore, the leading orretion to the degree distribution for a large but �nite BA tree network is
Π(k,N) = ΠBA(k)w

(

k√
N

)

. (3.12)The exponent α = 1/2 stemming from this equation agrees with the result for trees presented in Table3.1. The funtion w(x) an be found in two ways. First, we an evaluate numerially Eq. (3.3) for somelarge N and then resale variables aording to Eq. (3.10). Seond, it an be obtained analytially byreonstruting it from the moments Aq, whih express through the oe�ients Bq,q+1. Without goinginto the details we quote the result for the moments Aq [62℄:
Aq =

(2 + q)2q!

Γ((3 + q)/2)
. (3.13)Using the asymptoti behavior of Eq. (3.13) we an infer the form of the uto� funtion w(x) for largevalues of the argument:

lnAq ≈
1

2
q ln q. (3.14)Let us now ompare Eq. (3.14) with the behavior of moments Iq of the funtion exp [−(x/σ)ρ]:

Iq =

∫ ∞

0

xq exp [−(x/σ)ρ] dx =
σq+1

ρ
Γ

(

q + 1

ρ

)

. (3.15)For large q the leading term of ln Iq ≈ (q ln q)/ρ with ρ = 2 is the same as in Eq. (3.14), i. e. the tailof w(x) de�ned by its higher moments falls like a Gaussian. The parameter σ is found by omparingsub-leading terms in Iq and Aq. The value σ = 2 obtained in this way will be on�rmed below by a diretalulation of w(x). To this end we de�ne a generating funtion:
M(z) =

∞
∑

q=0

Aq
zq

q!
. (3.16)Comparing this de�nition with Eq. (3.11) we see that M(z) =
∫∞

0 exp(zx)w(x)dx so that
M(−z) =

∫ ∞

0

exp(−zx)w(x) dx (3.17)36



is the Laplae transform of w(x). Therefore w(x) is given by the inverse Laplae transform of M(z) or,equivalently, by the Fourier transform of M(−iz):
w(x) =

1

2πi

∫ i∞

−i∞

dz ezxM(−z) =
1

2π

∫ ∞

−∞

dz eizxM(−iz). (3.18)Using the expliit form of oe�ients Aq we get
M(z) =

∞
∑

q=0

(2 + q)Γ(q + 3)

Γ(q + 2)Γ((3 + q)/2)
zq. (3.19)This series has an in�nite radius of onvergene. The funtion M(z) given by Eq. (3.19) is a speial aseof a more general power series:

M(z) = N
∞
∑

q=0

(aq + b)Γ(q + ξ)

Γ(q + ζ)Γ(χq + ψ)
zq, (3.20)belonging to the lass of so alled Fox-Wright Ψ funtions [68, 69℄. In [62℄ it has been shown that itsinverse Fourier transform, that is w(x), an be expressed through a ombination of auxiliary funtions

f̃χ,ψ,ξ,ζ(x). In general, they are de�ned as follows:
f̃χ,ψ,ξ,ζ(x) =

∑

i

ressi

[

Γ(ξ − s)Γ(1 − s)

Γ(ζ − s)Γ(ψ − χs)
xs−1

]

s=si

, (3.21)where the sum runs over all points si at whih either Γ(1− s) or Γ(ξ − s) has a pole. The above formulasimpli�es for ξ, ζ being positive integers m,n:
f̃χ,ψ,m,n(x) =

∞
∑

q=0

(−x)q (m− 2 − q)(m− 3 − q) · · · (n− 1 − q)

Γ(ψ − χ− χq)q!
. (3.22)The �nal formula for w(x) for arbitrary χ, ψ, ξ, ζ reads

w(x) = N
(

axf̃χ,ψ−χ,ξ−1,ζ−1(x) + (b− a)f̃χ,ψ,ξ,ζ(x)
)

, (3.23)where f̃ is given either by Eq. (3.22) or by more general Eq. (3.21). In our ase, whih orresponds to
N = 1, a = 1, b = 2, χ = 1/2, ψ = 3/2, ξ = 3, ζ = 2, the funtion w(x) is given by

w(x) = xf̃1/2,1,2,1(x) + f̃1/2,3/2,3,2(x) =

∞
∑

q=0

(−x)q
q!

[ −qx
Γ(1/2 − q/2)

+
1 − q

Γ(1 − q/2)

]

. (3.24)After some algebrai manipulations we get the funtion w(x) expressed as an in�nite series:
w(x) = 1 − 4√

π

∞
∑

q=1

x2q+1 (−1)qq2

q!22q(2q + 1)
. (3.25)One an hek that it orresponds to a Taylor expansion of the result given in [66℄:

w(x) = erf(x/2) +
2x+ x3

√
4π

e−x
2/4, (3.26)where erf(z) is the omplementary error funtion. The approximate result of Ref. [70℄ is lose to thisexat formula. The series in Eq. (3.25) is rapidly onvergent, and if trunated at some qmax, an be usedin numerial alulations. One sees that the uto� is indeed of a Gaussian type, with the variane σ2 = 4in agreement with the asymptoti behavior of Aq disussed above.These alulations an be easily extended to the ase of an arbitrary initial graph. For example, if weassume that at the beginning we have a omplete graph with n0 nodes, after repeating all the steps ofalulations, we will obtain the following formula for the moments:

Aq =
Γ(1 + n0 − ω)

Γ(n0 + 3/2 − ω + q/2)

[

Γ(4 + q)

2(q + 1)
+
m0(n0)Γ(2 + n0 + q)

Γ(n0 + 2)

]

≈ exp

(

1

2
q ln q +O(q)

)

, (3.27)37
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Figure 3.1: Plots of the uto� funtion w(x) alulated from Eq. (3.28) for the BA model without initialattrativeness, for the initial graph with n0 = 3 (blak lower line) and 5 nodes (blak upper line) agreevery well with w(x) obtained from averaged degree distribution for 2 × 104 generated networks of size
N = 104 (gray lines).with ω = n0(3 − n0)/2 and the zero-th moment m0(n0) = (n0 + 1)n0/2 being just the number of linksin the initial graph. This allows us to infer the asymptoti behavior of w(x) whih is the same as for
n0 = 2. Therefore, the degree distribution for the BA tree model without initial attrativeness has alwaysa Gaussian uto� whose position sales as ∼ N1/2. The full expression for w(x) takes the form:

w(x) = Γ(1 + n0 − ω)

[

1

2
f̃ 1

2 ,n0+
3
2−ω,4,2

(x) +
m0(n0)

Γ(n0 + 2)
f̃ 1

2 ,n0+
3
2−ω,2+n0,1(x)

]

. (3.28)In �gure 3.1 we have plotted w(x) alulated from Eq. (3.28) together with the results of Monte Carlosimulations for �nite-size networks. One readily sees that w(x) strongly depends on the size of the seedgraph n0. This sensitivity to the initial onditions has just been reported in [66℄ as well as in Ref. [71℄where another quantity has been measured.Let us go now to the ase of preferential attahment kernel k + a0, that is to the model with initialattrativeness a0 > −1. From Eq. (2.66) we know that Π∞(k) ∼ k−γ with the exponent γ = 3 + a0.Like we said, the model is equivalent to the growing network with re-diretion (GNR model), desribedin previous hapter, with the hoie of the parameter r = 1/(a0 +2). In all numerial simulations showedin this setion the GNR model is used. On the other hand, in analytial alulations we shall followthe proedure, whih we desribe above for the pure BA model. Assuming that we start from the dimeron�guration, using the reursion formula for Nk(N) we get an equation for the moments mq(N) whihan be solved in the form whih involves some (yet) unknown oe�ients Bq,q+1:
mq(N) =

1

Γ
(

N − 1 + a0

2+a0

)

(N − 1)

q+1
∑

i=0

Bqi
Γ
(

N + a0+i
2+a0

)

Γ
(

2 + a0+i
2+a0

) . (3.29)For large but �nite N it simpli�es to
mq(N) ≃ N

q+1
2+a0 Aq, (3.30)with Aq = Bq,q+1/Γ

[

2 + a0+q+1
2+a0

]. Therefore, the funtion v(k,N) obeys the following saling rule:
v(k,N) → Nw

(

k/N
1

2+a0

)

, (3.31)where the funtion w(x) has now moments Aq depending on a0. Equation (3.31) indiates that the uto�sales as N1/(γ−1) where γ = 3 + a0 is the exponent in the power law for Π∞(k). This is in agreement38



with the result presented in table 3.1. For given N , the uto� dereases when the exponent γ inreases.Pratially, this implies that the power law in the degree distribution an hardly be seen for γ > 4 beauseeven for large networks with N = 106 nodes the uto� orresponds to the value of kmax ∼ 100 and thepower-law extends maximally over 1− 2 deades in k. This partially explains the fat why S-F networkswith γ above 4 are pratially never enountered [2℄.The moments Aq an be found:
Aq = 2

Γ
(

1 + a0

2+a0

)

Γ(5 + 2a0)

[6(q + 2) + a0(13 + 4a0 + 3q)] Γ (4 + 2a0 + q)

(1 + q)Γ
(

5+3a0+q
2+a0

) . (3.32)The equation (3.32) is muh more ompliated than Eq. (3.13) but it redues to it for a0 = 0. The leadingterm of Aq is
lnAq ≈

1 + a0

2 + a0
q ln q. (3.33)Comparing this to Eq. (3.15) as it has been done before, one sees that for large x the funtion w(x)deays like exp [−(x/σ)ρ] with

ρ =
2 + a0

1 + a0
=
γ − 1

γ − 2
. (3.34)This agrees very well with numerial results. The uto� for γ 6= 3 is no longer Gaussian. For 2 < γ < 4,as often found in real networks, ρ is always greater than 1.5 and therefore the �nite-size uto� annotbe approximated by a pure exponential deay, observed in some networks [2℄. Exponential uto�s foundin suh networks probably have di�erent origin [72℄. The formula for M(z) is still given by Eq. (3.20)with the parameters a, b, . . . expressed through a0. The uto� funtion w(x) is given by Eq. (3.23). Forinstane, for a0 = −1/2 whih orresponds to γ = 2.5 we get

w(x) =
Γ(2/3)

3

∞
∑

q=0

(−x)q
q!

[

x
−9q

2Γ(1 − 2q/3)
+

2 − 2q

Γ(5/3 − 2q/3)

]

. (3.35)In Fig. 3.2 we plot w(x) for a0 = −1/2, 0 and 1. For numerial alulations all series have been trunated.The trunation error is less than 10−4 in the plotted area. The results show that the urves beome more�at when a0 inreases and agree well with w(x) obtained in simulations of �nite-size networks.The initial graph has a great in�uene on the funtional form of w(x). We do not onsider here thedependene on the size n0 of the seed graph, but one an show that asymptoti properties of the uto�funtion are insensitive to n0 and therefore for x being su�iently large, w(x) ∼ exp [−(x/σ)ρ] dependsonly on a0, i. e. only on the exponent γ in the power-law Π(k) ∼ k−γ .So far we have onsidered the model with m = 1, restriting ourselves to the ase when graphs areessentially trees and possible yles an only ome from the seed graph. The general ase m > 1 is muhmore ompliated. Eah of m proper links of a newly introdued node has to be onneted to one of
N preexisting nodes aording to the preferential attahment rule. However, sine multiple links arenot allowed, the nodes to whih links have been onneted on this step have to be exluded from theset of nodes available for further linking. Thus, when a new proper link of a node is introdued, theprobabilities of attahing it to one of the preexisting nodes are di�erent depending on whether the linkis the �rst, seond, et., of m. The rate equation for Nk(N) an still be obtained in this ase, but itsstruture is very involved. For example, for m = 2 and n0 = 3 (triangle as a seed graph) the full rateequation for Nk(N) reads:

Nk(N + 1) = Nk(N) + δk,2 +
1

4N − 6

[

(k − 1)

(

1 − k − 1

4N − 5 − k
+ SN

)

Nk−1(N)

−k
(

1 − k

4N − 6 − k
+ SN

)

Nk(N)

]

, (3.36)where SN denotes the auxiliary quantity:
SN =

N
∑

k=1

kNk(N)

4N − 6 − k
. (3.37)Due to the presene of the SN term, Eq. (3.36) is nonlinear in Nk, and ontains k in denominators. Thismakes impossible to apply our method in a straightforward way to the exat equation. In this ase the39
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Figure 3.2: Plots of w(x) alulated from Eq. (3.23) for a0 = −0.5, 0 and 1 (solid lines from top tobottom) whih orrespond to γ = 2.5, 3 and 4, respetively. The urves beome �at with inreasing a0.The thik gray lines are w(x) obtained from averaged degree distribution for 2× 104 generated networksof size N = 104. The tails deay as exp(−xρ) with ρ = 3, 2, 3/2, respetively, in agreement with numerial�ndings.approximations are needed. The equations for m > 2 are even more ompliated beause of inreasingnumber of possible ways of distributing m links at eah time step.We an, however, make the following approximation. When the total number of links L is large, theprobability that at eah step we pik up two or more links pointing onto the same node is small. Whenthe size n0 of the initial graph is muh larger than m, this ondition is ful�lled from the beginning and weexpet that this approximation should work good. Within this approximation, the rate equation takesthe form:
Nk(N + 1) = Nk(N) + δk,m +

k − 1

2(N − ω)
Nk−1(N) − k

2(N − ω)
Nk(N). (3.38)The Kroeneker delta stands for the addition of one node with m links at eah time step. The remainingterms give the probability of preferential attahment like in Eq. (3.1). The denominators must give thenormalization ∑k kNk(N) = 2L. Assuming that we start from a omplete graph with n0 nodes, we getthe number of links L = m(N − ω) with

ω = n0(2m+ 1 − n0)/(2m). (3.39)The fator m oming from 2L in the denominator anels out with m oming from m possibilities ofhoosing links at eah step. The hoie of the same name �ω� above, as in Eq. (3.28) is not aidental.In fat, the uto� funtion w(x) is now given by a very similar formula:
w(x) = Γ(1 + n0 − ω)

[

1

Γ(m+ 2)
f̃ 1

2 ,n0+
3
2−ω,3+m,2

(x) +
m0(n0)

Γ(n0 + 2)
f̃ 1

2 ,n0+ 3
2−ω,2+n0,1(x)

]

, (3.40)with m0(n0) = n0(n0 + 1)/(m+ 1), whih takes the form of Eq. (3.28) for m = 1. Thus the same saling
kmax ∼ N1/2 holds also here.Like before, we expet some dependene on the initial graph, but as far as the asymptoti propertiesof w(x) are onerned the dependene should be negligible. Therefore, one should take the simplestpossible initial on�guration. The most natural hoie is the omplete graph with n0 = m + 1 beausethen Π(k) = 0 for all k < m at eah step of the growth proess. However, one should remember thatthe approximation used here works well only for m ≪ n0 beause Eq. (3.38) with ω given by Eq. (3.39)approximates reasonably the full rate equation only if m≪ N at eah stage of the network growth.In �gure 3.3 we ompare our approximate analytial solution with Monte Carlo simulations of BAnetworks initiated from omplete graphs with di�erent n0. One an see a small deviation between the40
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Figure 3.3: The funtion w(x) for m = 2 and for n0 = 3, 7, 10 and 15 (urves from the �attest to themost peaked). The agreement between the analytial solution and the results of omputer simulations isnot as good as before due to approximate harater of the solved equation. The experimental points areobtained for N = 4000. The dip at about x = 1 and the peak at about x = 2 espeially pronouned inthe ase of larger seed graphs mean that muh more nodes with high degrees is present than it would beexpeted for the asymptoti power-law behavior of Π∞(k).analytial and numerial urves. The largest di�erene is for n0 = 3 and the smallest for n0 = 15,on�rming our earlier onlusion that the approximation is better for larger seed graphs. The asymptotiform of w(x) ∼ exp(−x2/4) is the same as for growing BA trees, regardless of how many new nodes mwe add per one time step.3.1.3 Numerial simulations of equilibrated networksWe have performed extensive numerial simulations of various networks to ross-hek analyti resultsfor the saling of the uto� funtion. The results for growing networks have been just presented in theprevious setion. As we saw, they were in a very good agreement with theoretial preditions, and alsoonsistent with earlier results presented in table 3.1. Now we shall desribe results of the numerialomputation of the uto� for equilibrated graphs. We used the Monte Carlo generator desribed inSetion 2.1.5 and in Ref. [53℄. It performs a weighted random walk in the on�guration spae of theanonial ensemble. Eah elementary step of the random walk is done using the T-rewiring and aeptedwith the Metropolis probability. We simulated three ensembles: equilibrated trees, equilibrated simplegraphs, and equilibrated degenerated graphs. In all the ases we used basially the same algorithm exeptthat in the �rst one we rejeted rewirings violating the tree struture by introduing a yle; in the seondwe rejeted moves leading to multiple- or self-onnetions. This resulted in lowering the aeptane rateand algorithm e�ieny, espeially for tree graphs, in whih ase we had to extend the simulation timeappropriately.In simulation of trees, as an initial on�guration we hosen a GNR network with a0 = γ − 3 adjustedto have the desired value of the exponent γ in the tail of the node degree distribution. The asymptotidegree distribution, given by Eq. (2.66), has 〈k〉 = 2 for in�nite GNR trees as it should2. In order topreserve this distribution in the proess of homogenization we had to set the ratio-weight funtion w(k)aording to Eqs. (2.49) and (2.59):
w(k) =

k(k + a0)

k + 3 + 2a0
. (3.41)This hoie ensures that the mean value of the degree distribution stays at its �ritial� value equal to

k̄ = 2L/N ≈ 2 for trees. For densities of links below the ritial one, one would observe an exponential2Sine L = N − 1, the average degree is in fat 2 − 2/N but it onverges fast to the asymptoti result.41



suppression of the degree distribution for large k, and for the average degree above two, the sale-freebehavior would be disturbed by the surplus of highly onneted nodes, or even by a ondensation of linksat some singular node. We simulated ensembles for three exponents γ = 2.5, 3 and 3.5 for whih thesaling exponent α should be 0.667, 0.5 and 0.4, respetively. For eah of them we took trees of twodi�erent sizes N = 1000 and N = 2000, and for eah we made between four and six independent runsin order to estimate errors by means of the standard Jakknife method [73℄. We measured the degreedistribution as well as a umulative degree distribution (.d.d.) de�ned as
P (k) =

∞
∑

q=k

Π(q). (3.42)Beause the degree distribution has the power-law tail Π(k) ∼ k−γ , the orresponding umulative distri-bution behaves as P (k) ∼ k−γ+1. Any uto� e�ets should be learly visible also in P (k). The advantageof using the umulative distribution is that one does not need to make binning to redue statistial errors.One makes a rank plot instead. From Eq. (2.66) we get the following formula for theoretial P (k) forin�nite graphs:
P∞(k) =

Γ(3 + 2a0)Γ(k + a0)

Γ(1 + a0)Γ(2 + 2a0 + k)
. (3.43)For any large but �nite network we expet, similarly as in setion 3.1.2, some uto� so that P (k) ≈

P∞(k)V (k/Nα). Here V (x) would be some universal funtion. If it is so, we should observe a ollapse ofurves Pexp(x)/P∞(x) plotted in the resaled variable x = k/Nα. In �gure 3.4 we see that suh a ollapseindeed takes plae for γ = 3 and 2.5. This means that theoretial values of α (see table 3.1) agree verywell with the experiment. However, for γ = 3.5 the ollapse is muh better for α = 0.55 ± 0.03 than forthe theoretially predited value 0.4. This means that there are more nodes with high degrees than itis expeted. In [65℄ it has been suggested, that in the ase of disassortative networks like equilibratedtrees presented here, the uto� might be higher than 1/(γ − 1). On the other hand, the assortativityoe�ient A inreases3 with γ so the assortativity is bigger for γ = 3.5 than for 2.5 where we observe aperfet agreement. So it is not lear whether indeed the argument of Ref. [65℄ is entirely orret.Let us now disuss equilibrated simple graphs. We will generate weighted graphs with the degreedistribution (2.66). In our Monte Carlo generator (see Set. 2.1.5) we have to set the weight fromEq. (2.59) to
w(k) =

(k + 1)(k + a0)

k + 3 + 2a0
, (3.44)in order to get the stationary distribution given by Eq. (2.66) in the limit of N → ∞. As before, we mustkeep the average degree equal to 2, whih is the mean value of the distribution (2.66). As the initial graphwe have hosen again a GNR tree, beause from the very beginning it has the orret degree distributionequal to that produed by the graph rewiring proess in the ourse of thermalization. The �nal resultsare the same when one begins with any random graph with N = L but the onvergene to the asymptotidistribution might be in this ase muh slower.We simulated four ensembles: with γ = 3, 3.5, 2.5 and 2.1, eah of them for three sizes N = 2000, 4000and 8000. The aeptane rate of the algorithm was better than in ase of trees and thus we were ableto examine larger systems. Before starting simulations we suspeted that the data would ollapse to asaling funtion V (x) better than for trees, beause of less strutural onstraints. Surprisingly, as we seein �gure 3.5, the ollapse is worse and moreover, it takes plae for di�erent values of α than those givein table 3.1 and predited in either [63℄ or [64℄. In partiular, for γ = 3 where one expets α = 1/2, wemeasured 0.38± 0.02. For the ase γ = 3.5 we found that the measured value 0.40± 0.02 agrees with [64℄whih predits α = 0.4, while for γ = 2.5, α = 0.35 ± 0.03 is loser to the result of [63℄ whih predits

α = 0.4. For γ = 2.1 (not shown in the piture) we found α = 0.33 ± 0.01, whih also agrees quitewell with [63℄. To summarize, the numerial results presented in this setion do not give a onlusiveevidene whih of the theoretial preditions, [63℄ or [64℄, for the saling exponent α of the uto� is better.Atually, for γ > 3 the numerial value is loser to that of [64℄ while for 2 < γ < 3 to that of [63℄. Oneshould, however, keep in mind that the numerial results are based on relatively small systems. For suhnetworks, subleading �nite-size orretions may be important and may interfere with the leading salingbehavior kmax ∼ Nα. The question how α depends on γ for equilibrated S-F networks remains open.Let us now disuss Monte Carlo results for pseudographs. As before we simulated ensembles for
γ = 2.5, 3 and 3.5, for N = 1000, 2000, 4000. The weight funtion w(k) is the same as in Eq. (3.44).3It an be shown that for the sale-free degree distribution (2.66), Trǫ grows with inreasing γ and so grows the oe�ient
A. 42
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In �gure 3.6 we show the funtion V (x) obtained from resaled numerial data: x = k/Nα. The exponent
α has been hosen in order to obtain the best overlap of the data for di�erent N . We see that forpseudographs the numerial results are onsistent with theoretial preditions. In table 3.1 we have
α = 1/2 for γ = 3, 3.5 and 2/3 for γ = 2.5, while the orresponding exponents determined experimentallyare 0.55 ± 0.03, 0.51 ± 0.02 and 0.66 ± 0.02, respetively. For γ = 3 the experimental value deviates abit from the theoretial ones, while for the two remaining values of γ the agreement is perfet. It is notsurprising that experimental results for pseudographs exhibit the best agreement with theory, sine theyhave almost no onstraints on the struture of graph. In fat, they may be e�etively redued to theballs-in-boxes model [36℄, whih shall be disussed in next setion.3.2 Dynamis on networksSo far we have disussed networks as purely geometrial objets. However, many networks representnot only relationships between nodes but often they are viewed as a bakbone of the omplex system onwhih signals, matter, or other degrees of freedom an propagate. For example, networks are a onvenientway of thinking about �ows, transport, signal propagation, and information spreading between di�erentobjets. In other words, one is often interested in dynamis of some degrees of freedom whih resideon the network and undergo some dynamial evolution transmitted by the struture of the network. Agood example is the air transportation network with airports as nodes and �ight onnetions as links.The dynamial variable in this ase is the number of passengers or goods. The �ow is proportionalto the intensity of the air tra� between airports. Another example is the voter model [74, 75℄ whihis used to mimi an opinion formation among di�erent individuals. The quantity whih is this ase�transmitted� on the network of aquaintane relations is the opinion. The distribution of opinions onthe network is represented by disrete variables de�ned on nodes. In the simplest version, nodes hangetheir state by opying the state of a randomly hosen neighbor. There are many other examples: thetra� of data pakets in the Internet [76℄, epidemi spreading (�ill� nodes infet other nodes) [77, 78, 79℄,synhronization of oupled osillators [80, 81, 82℄, et.It is worth mentioning, that the observed dynamial properties in models de�ned on sale-free networksare often quite di�erent from those on regular latties. It is so beause S-F networks have two importantproperties mentioned at the beginning of this thesis: the distane between every pair of nodes is relativelysmall, and the power law in the degree distribution leads to the emergene of nodes with a high numberof onnetions. This inhomogeneity in the degree distribution seems to play a very important role. Inthis hapter we shall examine the in�uene of the node degree inhomogeneity on the dynamis of systemsde�ned on networks. We shall use a very simple model, alled zero-range proess. This model is easy tohandle analytially. For example, one an show that its steady state has a simple fatorized form whihmakes it possible to solve the statis of the model analytially. Despite its simpliity, the model exhibitsa very interesting behavior, e.g. it has a phase transition between ondensed and unondensed state.In the �rst subsetion we shall de�ne a zero-range proess and review its basi properties. In partiular,we shall disuss the riterion for the ondensation on homogeneous and inhomogeneous networks. Next,we shall disuss in details a derivation of most important results in the statistial ensemble approah.In subsetion 3 we shall study the dynamis of the ondensate. We shall desribe how the ondensate isformed from a diluted state and how it behaves one it is formed. For example, we shall ask how muhtime the ondensate needs to disappear from the node it oupies. In the last subsetion we shall showhow to obtain sale-free �utuations in the inhomogeneous system.3.2.1 Zero-range proessThe zero-range proess (ZRP) is a partiularly simple di�usive system whih desribes dynamis ofballs (partiles) on a given network. The balls hop from site to site on the network and the hopping ratedepends only on the number of balls at that site from whih the ball hops. Despite its simpliity the modelexhibits many interesting properties like phase separation, phase transition, long-range �utuations andspontaneous symmetry breaking, observed in more ompliated systems with mass transport. Therefore,it has attrated a great attention reently [83, 84, 85, 86, 87, 88℄. In omparison to more realisti models,it has one advantage: the steady state of the system is known exatly and it assumes a very simple,fatorized form. It is worth to mention here that stati properties of the model are the same as in theballs-in-boxes model [36, 89℄ developed earlier and suessfully applied to explain suh phenomena asfor instane wealth ondensation [90℄, emergene of the Hagedorn �reball in hadron physis [91, 92℄ ora ollapse of random geometry in the quantum gravity [89, 93℄. Although the statis of the zero-range45



proess is relatively well known, its dynamis, in ase when it takes plae in an inhomogeneous system,has not been yet so thoroughly studied.We shall onsider a zero-range proess on a onneted simple graph with N nodes and L links. Eahnode i of the graph is oupied by mi ≥ 0 idential balls and the total number of balls is �xed and equalto M . The system undergoes the following dynamis: balls hop from non-empty nodes with rate u(m),whih depends only on the node oupation number m, to one of the nearest neighbors, hosen withequal probability. The funtion u(m) is any non-negative funtion de�ned for m = 0, 1, 2, . . . . For a nodewhih has k neighbors, the hopping rate per link emerging from this node is equal to u(m)/k sine eahlink is hosen with equal probability 1/k.It is easy to implement this type of dynamis on a omputer. At eah time step we pik N nodes atrandom. From eah of these nodes, oupied by at least one ball, a ball is moved to a node hosen withequal probability from its ki nearest neighbors. The move is aepted with probability proportional to
u(mi), otherwise it is disarded. The jumping rate u(mi) must be properly normalized to be less than 1.With suh a de�nition, one unit of time orresponds to one sweep of the system that is to N attempts ofmoving a ball.The ZRP has a steady state. Following Ref. [94℄, we shall present here a short derivation for anarbitrary network having adjaeny matrix Aij . We are interested in the probability P (m1, . . . ,mN)of �nding the system in a partiular state with given number of balls on eah site. In the stationarystate, this probability must be onstant, as a result of balane between hopping into and out of the givenon�guration:

u(mi)P (m1, . . . ,mN ) =





∑

j 6=i

Aij
1

kj
u(mj + 1)P (. . . ,mj + 1, . . . ,mi − 1, . . . )



 , (3.45)for eah node i. The sum over j inludes only neighbors of node i, eah of them gives the ontribution
∝ 1/kj sine it has kj − 1 other neighbors than i. Assume now that P (m1, . . . ,mN ) fatorizes into somefuntions f̃i(mi):

P (m1, . . . ,mN ) =
1

Z(N,M)

N
∏

i=1

f̃i(mi), (3.46)where Z(N,M) is an appropriate normalization. Inserting this formula into Eq. (3.45) we have:
∑

j 6=i

Aij

[

1

kj
u(mj + 1)f̃j(mj + 1)f̃i(mi − 1) − 1

ki
u(mi)f̃i(mi)f̃j(mj)

]

= 0. (3.47)This equation is ful�lled only if eah term of the sum over j vanishes separately:
1

kj
u(mj + 1)

f̃j(mj + 1)

f̃j(mj)
=

1

ki
u(mi)

f̃i(mi)

f̃i(mi − 1)
. (3.48)The left-hand side depends on mj while the right-hand side on mi. To be equal for any mi and mj theyhave to be a onstant funtion, independent of m. Without loss of generality we an set it equal to one.We get:

f̃i(mi) =
ki

u(mi)
f̃i(mi − 1). (3.49)Iterating this equation we ome to the formula for f̃i(m):

f̃i(m) = kmi

i f(mi), (3.50)where we have introdued the funtion f(m) whih is independent of ki and reads:
f(m) =

m
∏

k=1

1

u(k)
, f(0) = 1. (3.51)The splitting into a site-dependent and a site-independent part is onvenient when one onsiders regulargraphs having all degrees ki the same. The partition funtion Z(N,M, {ki}) being a sum over all states

m1, . . . ,mN has the form:
Z(N,M, {ki}) =

M
∑

m1=0

· · ·
M
∑

mN=0

δP

N
i=1mi,M

N
∏

i=1

f(mi)k
mi

i . (3.52)46



Here the Kroneker delta gives the onservation law of the total number of balls. For onveniene we shalldenote Z(N,M, {ki}) of the original graph in short by Z(N,M), skipping the dependene on the sequeneof degrees {ki}. The partition funtion (3.52) enodes the whole information about stati properties of thesystem. It depends only on the node degrees and a detailed struture of the graph has no meaning. As weshall see, also dynamial quantities, like the typial life-time of the ondensate, are mainly haraterizedonly by the degree sequene {ki}, if the graph has a small diameter.In order to study stati and dynami behavior of the ZRP it is onvenient to de�ne an e�etivedistribution of balls πi(m), that is the probability that site i is oupied by m balls, averaged over allon�gurations: πi(m) = 〈δm,mi
〉. It an be alulated as follows:

πi(mi) =
∑

m1

· · ·
∑

mi−1

∑

mi+1

· · ·
∑

mN

P (m1, . . . ,mN ) δP

N
i=1mi,M

=
Zi(N − 1,M −mi)

Z(N,M)
kmi

i f(mi), (3.53)where Zi(N − 1,M −mi) denotes the partition funtion for M −mi balls oupying a graph onsistingof N − 1 nodes with degrees {k1, . . . , ki−1, ki+1, . . . , kN}. It is important not to think about Zi as ofpartition funtion of the original graph with the ith node removed, but rather as of a new graph built ofthe old sequene of degrees without ki. We de�ne also the mean oupation probability as the averageover all nodes:
π(m) = (1/N)

∑

i

πi(m). (3.54)It is worth mentioning that for graph with k1 = · · · = kN ≡ k = const, that is for a k-regular graph, theabove formulas redue to that known from the balls-in-boxes model and the distribution πi(m) = π(m)is the same for all nodes. We will see below that sometimes π(m) is indeed equal to f(m). Therefore weshall all f(m) �bare� oupation probability.The partition funtion an be alulated reursively:
Z(N,M, {k1, . . . , kN}) =

M
∑

mN=0

f̃N (mN )
∑

m1,...,mN−1

δPN−1
i=1 mi,M−mN

N−1
∏

i=1

f̃i(mi)

=

M
∑

mN=0

f̃N(mN )ZN (N − 1,M −mN) =

M
∑

m=0

f̃N (m)Z(N − 1,M −m, {k1, . . . , kN−1}). (3.55)For N = 1 the partition funtion reads simply Z(1,M, k1) = f̃1(M). The formula (3.55) an serve fornumerial alulations of the partition funtion for systems of order few hundreds nodes or more. Usingit together with Eq. (3.53) we an ompute the distribution of balls in a more e�ient way that by MonteCarlo simulations.The knowledge of the partition funtion allows one to alulate orrelation funtions of higher order.For small systems we an alulate Z(N,M) exatly from Eq. (3.55), for large systems it is better to usethe de�nition (3.53) whih allows for some approximations. In the thermodynamial limit of N → ∞it is therefore onvenient to introdue the density of balls ρ ≡ M/N and to study the limit of �xed ρwhile inreasing N . As we shall see below, for large systems, i.e. for N,M large, ρ beomes a relevantparameter of the model.The dynamial and stati properties of the ZRP depend strongly on the funtion u(m) and the degreesequene {ki}. For the model desribed here we an distinguish two lasses of systems. From now on,by a homogeneous system4 we shall understand the network with all ki's being equal. It is true forinstane for a omplete graph, one-dimensional losed hain or a k-regular random graph. In ontrast,an inhomogeneous system has a non-trivial degree sequene, with at least one degree di�erent fromothers. This is the ase for random graphs, star graphs and sale-free networks.3.2.2 Condensation in the ZRPThe reason why zero-range proesses are so interesting is that under some onditions one observes aphenomenon of �ondensation� in the steady state. In this phenomenon, a single node takes a �nitefration of all balls present in the system. The e�et does not disappear in the thermodynami limit.The ondensation an be observed in the oupation distribution π(m) as a separated peak, whose positionmoves almost linearly with the system size. Unlike the Bose-Einstein ondensation whih takes plae in4We mentioned before, that equilibrated networks were sometimes alled �homogeneous networks�. In this paper, however,we shall always use the term �homogeneous� while speaking about networks with equal degrees.47



the momentum spae, the above e�et appears in the real spae. Therefore it mimis suh proesses likethe mass transport [83℄, ondensation of links in omplex networks [35, 84℄ or phase separation [95, 96℄.The ondition for the emergene of the ondensation in homogeneous systems is well known [67, 94℄.On the other hand, until now only a few inhomogeneous systems have been examined [97, 98, 99℄. In thissetion we summarize some results and disuss methods of derivations for the existene of ondensate. Webegin with homogeneous systems and then we present our reent results for graphs with inhomogeneousdegrees.Homogeneous systems. For k-regular onneted simple graphs, whih we shall onsider in thissetion, the stati properties of the steady state depend only of the hopping rate u(m), the number ofnodes N and the number of ballsM , and are independent of the details of graph topology. The partitionfuntion assumes the form:
Z(N,M) =

M
∑

m1=0

· · ·
M
∑

mN=0

δP

N
i=1mi,M

N
∏

i=1

f(mi). (3.56)The fator kM has been dropped sine it is onstant for given k and M . Similarly, for the distribution ofballs we have
π(m) =

Z(N − 1,M −m)

Z(N,M)
f(m). (3.57)From the de�nition (3.56) of Z(N,M) we an obtain another formula for the distribution of balls:

π(m) = N−1f(m)
∂ lnZ(N,M)

∂f(m)
, (3.58)and hene π(m) is proportional to the derivative of the �free energy� lnZ and the bare oupation prob-ability f(m). Notie a similarity between this formula and that of Eq. (2.35) for the degree distributionof equilibrated graphs. As we will see, indeed, there is a lose relation of the ZRP and equilibratedpseudographs.Now we shall study, how the behavior of u(m) in�uenes on the emergene of ondensation. FromEq. (3.49) we see that for homogeneous system there is a orrespondene between the hop rate u(m) andthe funtion f(m):

u(m) = f(m− 1)/f(m) ⇐⇒ f(m) = f(m− 1)/u(m), (3.59)and in many ases f(m) is more onvenient, so we will stik to it below. Using the integral representationof Kroneker's delta we an rewrite the partition funtion as
Z(N,M) =

∮

dz

2πi
z−M−1 [F (z)]

N
, (3.60)where F (z) is an in�nite series with oe�ients given by f(m):

F (z) =

∞
∑

m=0

f(m)zm. (3.61)Denote the radius of onvergene of this series by r (�nite or in�nite). The partition funtion (3.60) hasthe same form as the p.f. (2.31) for pseudographs, up to a fator depending only on N,L. Therefore,equilibrated pseudographs an be mapped onto a homogeneous system of balls in boxes with M = 2L.The degree distribution Π(k) is then equivalent to the ball distribution π(m). Therefore, many resultspresented below apply also to pseudographs from Se. 2.1.4. In the thermodynamial limit, the integral(3.60) an be rewritten as
Z(N,M) ≈

∮

dz

2πi
exp [−N (ρ ln z − lnF (z))] , (3.62)and an be done using the saddle-point method:

Z(N,M) ≈ 1
√

2πNG′′(z0)

[F (z0)]
N

zM+1
0

, (3.63)48



where G(z) = −ρ ln z + lnF (z) and the saddle point z0 is determined by the ondition G′(z0) = 0,analogously to the ase of pseudographs:
ρ = z0

F ′(z0)

F (z0)
. (3.64)The saddle point solution (3.63) holds as long as the Eq. (3.64) has a real solution for z0. If not, theformula (3.63) annot be trusted and in fat, as we will see, it breaks down in the ondensed state. First,let us onsider a situation when Eq. (3.63) has a real solution for z0. In this ase the leading term in thefree energy lnZ is given by G(z0). Di�erentiating this with respet to f(m) we obtain the distributionof balls:

π(m) = f(m)
zm0
F (z0)

. (3.65)Hene, if z0 = 1, π(m) ∝ f(m) whih explains the name �bare oupation funtion� for f(m). One andiretly see from the de�nition that F (z) is an inreasing funtion of z. Similarly one an see that theright-hand side of Eq. (3.64) inreases monotonially with z0 as long as z0 is smaller than the radius ofonvergene r. It means that z0 inreases when the density ρ inreases. If the series (3.61) is onvergenton the whole omplex plane (r → ∞), the saddle point solution for π(m) is valid for any density ρ. Thishappens only when f(m + 1)/f(m) → 0 for m → ∞, whih orresponds to u(m) → ∞. In turn, thismeans that there exists an e�etive repulsive fore between balls preventing them from oupying a singlesite. So in this ase balls tend to distribute uniformly on the whole graph, regardless of the density ofballs ρ. Consider now u(m) ∼ mδ for an arbitrary δ > 0. Then f(m) is given by
f(m) ∝ 1

(m!)δ
, (3.66)and it is learly seen from Eq. (3.65) that the distribution of balls falls faster than exponentially.On the other hand, it is possible to hoose f(m) so that F (z) has a �nite radius of onvergene. Thissituation happens when u(m) tends to a onstant for m → ∞. Beause multiplying u(m) by a onstantfator simply orresponds to resaling the time axis, without loss of generality one an set u(m) → 1 inthe limit of large m. To be more spei�, let us onsider the ase u(m) = 1 + b

m , for whih we �nd thefollowing formula for f(m) [100℄:
f(m) =

Γ(b+ 1)m!

Γ(b +m+ 1)
∼= Γ(b + 1)

mb
, (3.67)whih falls like a power of m for large m. In this ase the series F (z) has a �nite radius r = 1. Wemust onsider now two ases: b ≤ 2 and b > 2. For b ≤ 2 the derivative F ′(z) goes to in�nity when

z approahes one from below. But the ratio F ′(z)/F (z) is �nite for z < 1 and thus the density fromEq. (3.64) an be arbitrarily large. The saddle-point approximation works well:
π(m) ∼ zm0

mb
, (3.68)for all values of ρ. We see that in this ase the distribution of balls falls o� exponentially for large m.The ase b > 2 is di�erent beause the ratio F ′(z)/F (z) annot grow above some ritial ρc:

ρc =
F ′(1)

F (1)
=

∑

mmf(m)
∑

m f(m)
=

1

b− 2
<∞, (3.69)at whih Eq. (3.65) ease to hold for real values of z0. But of ourse we an put as many balls in thesystem as we want, so we an inrease ρ above ρc. What happens then? At the ritial point ρ = ρc, thedistribution of balls is given by

πc(m) =
f(m)

F (1)
∼ Γ(b+ 1)

mb
, (3.70)in the thermodynamial limit. It has a �nite-size uto� for N <∞ whih sales as [67℄

∼ N1/(b−1) for 2 < b < 3, (3.71)
∼ N1/2 for b > 3, (3.72)exatly like for the uto� of the degree distribution for degenerated graphs. For ρ > ρc the saddle-pointequation is no longer valid. To understand what happens then, reall the Bose-Einstein ondensation.49



Below the ritial temperature Tc, the fration of partiles oupying all energy levels above the groundstate is equal to (T/Tc)
3/2 and it is less than one. The only way to keep the average number of partiles�xed is to let them go into the lowest energy level whih does not ontribute to the partition funtion,whih in the thermodynami limit is given by the integral over energy [101℄. The situation is a bit similarto the ondensation of balls. Above the ritial density some nodes take the surplus of balls, while therest follows the ritial distribution (3.70). In [102℄ one an �nd a omplete proof. Here we only reallthe main arguments [94℄ standing behind it. Assume that the system is deeply in the ondensed phase,so that M ≫ Nρc. Denote the exess of partiles by ∆ = M − ρcN . The anonial weight of eahon�guration is

P (m1, . . . ,mN ) = f(m1) . . . f(mN ) ∼
(

N
∏

i=1

mi

)−b

. (3.73)Let us estimate the ontribution to the partition funtion from states where the surplus of balls oupyone, or two nodes. The ontribution to Eq. (3.73) from a single-site ondensate is N∆−b. From two-nodeondensation we however have N(N − 1)/2 × (∆/2)−2b. Beause ∆ ≈ M = ρN , we get for these twostates:
N1−bρ−b and (N − 1)N1−2b22b−1ρ−2b, (3.74)respetively. The seond expression disappears faster in the thermodynamial limit, so we infer that theondensate emerges on a single node taking ∆ balls on the average. One an onsider also higher-nodesstates but they disappear even faster when N → ∞. The ondensate is seen as a peak πcond(m−∆) in thedistribution of balls. Sine it oupies only one node, the area under the peak is equal to 1/N . Beausein the remaining part of the system there are only ρcN balls, the bakground of the distribution π(m) isperfetly desribed by the saddle-point solution (3.70). The omplete expression for π(m) inluding theondensate reads

π(m) ≈ Γ(b+ 1)

mb
+ πcond (m− (M − ρcN)) . (3.75)The form of πcond(m) has been investigated in [67℄ in the model with ontinuous massesmi. In the modelonsidered here one an take a quasi-ontinuous limit by letting M → ∞ and resaling u(m) properly.For 2 < b < 3, the peak is approximated by

πcond(x) ∼= N−b/(b−1)Vb

( x

N1/(b−1)

)

, (3.76)with Vb(z) given by the integral:
Vb(z) =

∫ i∞

−i∞

ds

2πi
e−zs+bs

b−1

, (3.77)whih falls as |z|−b for z → −∞ and faster than a Gaussian funtion for z → ∞. On the other hand, for
b > 3 in the viinity of m = ∆, the peak falls like a Gaussian:

πcond(x) ∼=
1√

2πσ2N3
exp(−x2/2σ2N), (3.78)with σ2 = 〈m2〉 − 〈m〉2 being the variane of f(m). In both ases, the area under πcond(m) is equal to

1/N .The piture we see now for b > 2 is the following. Below the ritial density the distribution of ballsis given by a power law suppressed additionally by an exponential prefator. At the ritial point thisprefator vanishes and we observe a pure power law, disturbed only by �nite-size e�ets. Above theritial point, the ondensate emerges at one node hosen at random (spontaneous symmetry breaking)from all nodes. The ondensate does not need to oupy this partiular site for the whole time. In fat,we will see that it performs a kind of random walk through the system, but the proess of melting andrebuilding the ondensate is fast in omparison to the mean oupation time. The ondensate ontains
M − ρcN balls on average.At the end, let us mention the ase u(m) → 0 for large m. In this ase f(m) inreases fast with mand the series F (z) has a zero radius of onvergene. The ritial density ρc is zero and therefore theondensation takes plae at any density ρ > 0. Balls attrat so strong that almost all of them fall into asingle node hosen at random.In Fig. 3.7 we show π(m) for the three di�erent types of the hop funtions f(m) disussed above, forvarious densities ρ. The data are obtained by means of the reursion formula (3.55) for the partitionfuntion and, if possible, ompared with the saddle-point solution (3.65).50
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Figure 3.7: Plots of the distribution of balls π(m) for a homogeneous system with various f(m), N , and
ρ. Left: f(m) ∼ 1/m!, N = 40, for ρ = 0.5 (diamonds), 1 (squares) and 2 (irles), no ondensation.Middle: f(m) ∼ m−3, ρc = 1 and N = 400. For ρ = 0.5 (the left-most line) there is an exponentialuto�. At the ritial density ρ = ρc the power-law behavior is seen. Above ρc, the surplus of ballsforms the ondensate (the right-most line). The urves plotted with symbols are obtained by reurrentialalulation of Z(N,M) from Eq. (3.55). Solid lines represent the saddle-point solution (3.65). Right:
f(m) ∼ m!, N = 40, for ρ = 0.5, 1, 2 (from left to right). The ondensation is always present.Inhomogeneous systems. Now we fous on inhomogeneous networks, whose degrees vary from nodeto node. It turns out [94, 97℄ that the e�et of inhomogeneity is so strong that it ompletely dominatesover the dependene on the hop rate u(m) as long as the latter does not hange too fast with m. Forsimpliity we an assume u(m) = 1 and onentrate only on the e�ets oming from the inhomogeneityof degrees. Then, the zero-range proess desribes a gas of M indistinguishable and non-interating ballsrandomly walking on the given network.The most interesting ase of graph with inhomogeneous degrees is of ourse the S-F network. Itwas studied in [97, 103℄ but beause of its ompliated struture, only very simple alulations of thestati properties were possible. Here we deided to fous on the e�et oming from the node with largestdegree, say k1. To further simply onsiderations, we just imagine that the e�et an be well simulatedby assuming the identity of the remaining degrees. In e�et we are led to onsider an almost k-regulargraph whih has one node of degree k1 bigger than the others whih are of degree k2 = · · · = kN = k[99℄. We shall all it a single-inhomogeneity graph.To onstrut k-regular graphs and the single-inhomogeneity graph one an use various methods. Forinstane, one an start from a random graph with given number of verties and links and rewire it untilall nodes will have desired degrees. Another method of building a k-regular graph is to start from aomplete graph with k + 1 nodes and build the desired graph suessively adding nodes and links. Theproedure depends on the parity of k. If k is odd, then the number of nodes has to be even beausethe number of links L = Nk/2 must be integer, otherwise the graph annot be built. At eah step wepik up k − 1 existing links and split them so that nodes being formerly joined by these links, have now�halves� of them. Then we introdue two new nodes i, j joined by a link. Finally, one half of �free ends�of previously split links is joined to the newly added node i, and the other half to j (Fig. 3.8a). In thisway every node has now k neighbors. We repeat this proess until the total number of nodes is equal to
N . In ase of even k, the algorithm is similar, but we add only one new node per time step, and split k/2existing links (Fig. 3.8b). Sometimes, as a result of nodes' addition, multiple onnetions might arise. Toprevent them, we disard suh moves. For k muh smaller than N , they are rare and the aeptane ofthe algorithm is almost 100%. We use the struture desribed in [53℄ to ode the graphs.A single-inhomogeneity graph with one node having degree k1 > k an be then obtained from a
k-regular graph with N − 1 nodes by adding to it a new node and joining to it k1 links oming fromsplitting k1/2 randomly hosen links existing previously. If we get multiple onnetions, we disard thismove and try again.Before we alulate the partition funtion for a single-inhomogeneity graph it is onvenient to alulateit for a k-regular graph. Beause we set u(m) = 1 in this setion, as mentioned before, hene also
f(m) = 1. For a k-regular graph the partition funtion Z(N,M) from Eq. (3.52) is

Zreg(N,M) =

M
∑

m1=0

· · ·
M
∑

mN=0

δm1+···+mN ,M k
P

i
mi = kM

1

2πi

∮

dz z−M−1 [F (z)]
N
, (3.79)51



PSfrag replaementsa)b) i j

Figure 3.8: The illustration of the method for generating k-regular graphs, based on addition of newnodes: a) for odd k (here k = 3), b) for even k (here k = 4).where now F (z) reads
F (z) =

M
∑

m=0

zm =
1

1 − z
. (3.80)Using the expansion:

(1 − z)
−N

=

∞
∑

m=0

(−N
m

)

(−z)m =

∞
∑

m=0

(

N +m− 1

m

)

zm, (3.81)and Cauhy's theorem whih selets only the term with m = M , we �nally get an exat expression forthe partition funtion of a k-regular graph:
Zreg(N,M) = kM

(

N +M − 1

M

)

. (3.82)The partition funtion for a graph with one irregular degree k1 > k has the form:
Zinh(N,M) =

M
∑

m1=0

(k1)
m1

M
∑

m2=0

· · ·
M
∑

mN=0

δM,m1+···+mN
km2+···+mN . (3.83)The sum over m2, . . . ,mN is just the partition funtion Zreg(N − 1,M − m1) from Eq. (3.82). Afterhanging the variable from m1 to j = M −m1, the formula (3.83) an be rewritten as

Zinh(N,M) = kM1

M
∑

j=0

αj
(

N + j − 2

j

)

, (3.84)where α = k/k1 desribes the level of �inhomogeneity�. Introduing an auxiliary funtion
S(α) =

∞
∑

j=0

(−α)j
(−(N − 1)

j

)

=
1

(1 − α)N−1
, (3.85)we obtain the following expression:

Zinh(N,M) = kM1
[

(1 − α)1−N − c(M)
]

, (3.86)where c(M) gives a orretion for �nite M . It tends to zero for M → ∞:
c(M) =

∞
∑

j=M+1

αj
(

N + j − 2

j

)

. (3.87)This orretion an be however quite large for k1 ≈ k beause then α ≈ 1 falls slowly and the binomialterm inreases with j. We an estimate the orretion by the saddle-point method, replaing the sum bythe integral:
c(M) ≈ 1

(N − 2)!

∫ ∞

M

eF (j)dj, (3.88)52
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Figure 3.9: The distribution of balls at the singular node for single-inhomogeneity graphs with k = 4,
N = 20, k1 = 8 (left) and k1 = 16 (right). The total number of balls is M = 20, 40 and 80 from left toright, respetively. Points represent numerial data while solid lines the solution from Eq. (3.95).where we de�ne a new funtion F (j):

F (j) = j lnα+ ln((N + j − 2)!) − ln(j!), (3.89)and use Stirling's formula for fatorials. We get:
∫ ∞

M

eF (j)dj ≈ eF (j∗)

∫ ∞

M

e
1
2F

′′(j∗)(j−j∗)2dj = eF (j∗)

√ −π
2F ′′(j∗)

erf((M − j∗)
√

−F ′′(j∗)
)

, (3.90)where erf(x) denotes the omplementary error funtion:erf(x) =
2√
π

∫ ∞

x

e−y
2

dy, (3.91)and j∗ is the point being a solution of the saddle-point equation F ′(j∗) = 0:
j∗ ≈ α(N − 2)

1 − α
. (3.92)Only leading terms in F (j) were taken into aount. Colleting all together one �nds

c(M) =
α

α(N−2)
1−α

1 − α

((N − 2)/(1 − α))!

(α(N − 2)/(1 − α))!

√

πα(N − 2)

2

1

(N − 2)!
erf(M(1 − α) − α(N − 2)

√

α(N − 2)

)

. (3.93)The omplete partition funtion Zinh(N,M) is given by Eq. (3.86) with c(M) alulated by means ofEq. (3.93). We an now alulate π1(m) that is the distribution of balls at the node with degree k1:
π1(m) =

Zreg(N − 1,M −m)

Zinh(N,M)
km1 , (3.94)where Zreg(N,M) is the partition funtion for a k-regular graph. Making use of the formulas (3.82) and(3.86) we get

π1(m) = αM−m

(

M +N −m− 2

M −m

)

[

(1 − α)1−N − c(M)
]−1

. (3.95)In �gure 3.9 we show a omparison between the analyti solution (3.95) and the one obtained from MonteCarlo simulations. Negleting inessential normalization, the equation (3.95) has the following asymptotibehavior:
π1(m) ∼ exp(G(m)), (3.96)where

G(m) = −m lnα+

(

M +N −m− 3

2

)

ln(M +N −m− 2) −
(

M −m+
1

2

)

ln(M −m). (3.97)53



Condensation takes plae when G(m) has a maximum for positive m = m∗. Taking the derivative ofEq. (3.97) and negleting terms of order 1/M2 in the orresponding equation G′(m∗) = 0 we �nd
m∗ = M − α

1 − α
(N − 2). (3.98)Let us alulate the mean number of balls at the �rst node:

〈m1〉 =

M
∑

m=0

π1(m)m = M −
M
∑

j=0

π1(M − j)j. (3.99)In the large M limit, the sum over j an be alulated exatly:
M −

∑∞
j=0 j(−α)j

(

−(N−1)
j

)

∑∞
j=0(−α)j

(

−(N−1)
j

) = M − α
d lnS(α)

dα
= M − α

1 − α
(N − 1) ≈ m∗. (3.100)The ondensation ours when an extensive number of balls is on the singular node. This happens when

m∗ > 0 or equivalently when 〈m1〉 > 0. Therefore, the ritial density in the limit N,M → ∞ with �xeddensity ρ = M/N is
ρc =

α

1 − α
. (3.101)The ondensation is possible only for the density ρ > ρc, exatly like in the Single Defet Site model[94℄. The ritial density dereases with dereasing ratio α = k/k1 or, equivalently, with inreasinginhomogeneity k1/k. The site, whih ontains the ondensate, has N(ρ − ρc) + ρc balls on average, asfollows from Eq. (3.100). It is also easy to �nd that the distribution of balls πi(m) at any regular nodewith degree k falls exponentially

πi(m) ∝
(

k

k1

)m

= αm, (3.102)with α < 1. Thus the ondensation never appears on a regular node. When the system is in the ondensedphase, the mean oupation of suh a node is equal to ρc independently on the total number of balls inthe system.Let us onsider also a speial example of a single-inhomogeneity graph alled a star graph, whih hasone node of degree k1 = N − 1 and N − 1 nodes of degree k = 1. Beause k1 inreases when the systemgrows, the parameter α goes to zero as 1/N . The ritial density ρc → 0 in the thermodynamial limit.Thus on a star graph the ondensation appears for any �nite density ρ > 0. We an alulate the varianeof m1 whih is a measure of �utuations. Introduing µ ≡ − lnα we have
〈

(m1 − 〈m1〉)2
〉

= −d2 lnS(e−µ)

dµ2
, (3.103)and inserting µ = ln(N − 1) for the star graph we get (N−1

N−2

)2 whih tends to one when N → ∞.Therefore, for almost all time the ondensate has all balls but one, the mean value 〈m1〉 ≈ M − 1 as itfollows from Eq. (3.100), and �utuations are small. The oupation of other sites must be thus lose tozero.3.2.3 Dynamis of the ondensateOne an address two natural questions while studying the dynamis of the ondensate: i) how is it pro-dued from a uniform distribution of balls, and, ii) how muh time does it take to melt the ondensate andrebuilt it at another site? The answer to these questions is di�erent for homogeneous and inhomogeneoussystems. Moreover, in both ases the dynamis depends on the struture of network, not only on degrees.For instane, one an imagine that there is a bottlenek, e.g. a single link joining two larger parts ofthe network. The transport of balls on suh graph will be di�erent from the ase when these two partsare strongly interonneted. As we will see, however, the struture of the network is not so important asone ould think, and harateristi time sales are determined mainly by the size of the system and its(in)homogeneity.The emergene of the ondensate from a state where all nodes have approximately equal oupationnumbers has been investigated for homogeneous systems [94℄, [100℄, [102℄. The proess an be dividedinto two stages. First, the surplus of balls ∆ aumulates at a �nite number of nodes. When this happens,54
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Figure 3.10: Time sales for oarsening dynamis of the ondensate on various homogeneous networks. Innumerial simulations we measure the average time 〈τ〉 after whih the maximal number of balls exeeds
∆ = M −ρcN at some node. The system starts from a uniform distribution of balls and the simulation isstopped when mnmax ≥ ∆. The time τ is olleted and the proedure is repeated. At the end we alulate
〈τ〉. Repeating this a few times we estimate errors. Cirles: omplete graph (D > 2), squares: 4-regularrandom graph (D > 2), diamonds: 2d periodi lattie (D = 2), triangles: one-dimensional losed hain(D = 1). Lines are asymptoti solutions from Eq. (3.104) with proportionality oe�ient �tted to data.In all ases M = 4N and b = 4, hene the density ρ≫ ρc = 1/2.small ondensates exhange partiles through the nearly-uniform bakground. This results in oarseningof many ondensates whih eventually form a single one with a larger number of balls. This proess isvery slow. Assuming the jumping rate in the form u(m) = 1+b/m and that we are in the ondensed phase
ρ > ρc, the mean ondensate size grows as ∆(t/τ)δ, where the harateristi time sale τ for oarseningdynamis has been estimated as

τ ∼







N3 for D = 1,
N2 lnN for D = 2,
N2 for D > 2, (3.104)and the exponent δ is inversely proportional to the power of N in the expressions above . Here D is thedimension of the network, e. g. D = 1 for a losed hain, D = 2 for a two dimensional lattie and D = ∞for a omplete graph. In �gure 3.10 we present the omparison of these asymptoti formulas to omputersimulations.Contrary to the oarsening dynamis, studies on the dynamis of an existing ondensate in homoge-neous systems are rare [100℄. One an ask what is the typial life-time of the ondensate, that is howmuh time it takes before it disappears from one site and rebuilds at another site. Let nmax be theposition of the node with maximal number of balls. In �gure 3.11 we plot nmax as a funtion of time, fordi�erent densities ρ, for a regular graph. It is learly seen that the harateristi time between jumps ismuh larger in the ondensed phase. This means that the ondensate, one formed, spends a lot of timewithout any move and then suddenly jumps to another node. In [100℄ authors investigated this proesson a omplete graph. Using a Markovian ansatz that the number of balls on the ondensed site variesslowly in omparison to other mi's one an reast the original problem into a biased di�usive motion on aone-dimensional interval. The authors showed that average rossing time, i. e. the time between meltingthe ondensate and rebuilding it at another site, an be approximated by the formula

T̄ ∝ (ρ− ρc)
b+1N b, (3.105)for b > 1. Thus for �xed size of graph and far above ρc, T̄ grows like a (b + 1)th power of the density ofballs. For the �xed density, T̄ grows with N as ∼ N b. This formula holds only for quite large systemsand therefore it is hard to verify in Monte Carlo simulations. In �gure 3.12 we see that for small systemsthe power-law dependene is rather on M than on (ρ− ρc) as it would stem from Eq. (3.105).Let us disuss now inhomogeneous systems. Although the emergene of the ondensate in zero-range proesses has been extensively studied, not muh is known about their dynamis. The oarseningdynamis has been examined numerially for sale-free networks in Ref. [97℄, where the jumping rate wastaken to be u(m) ∝ mδ with δ ≥ 0. It was observed that the dynamis is hierarhial. First, balls onthe sub-network of small degrees are equilibrated, then nodes with higher degrees are equilibrated, and55
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tFigure 3.11: From left to the right: position of the node nmax with maximal number of balls as a funtionof time, for di�erent densities ρ = 0.5 (below ρc = 1), ρ = 1.5 and far in the ondensed phase ρ = 2.5.The network is a 4-regular graph with N = 20 nodes and the hop rate u(m) ∝ 1+3/m. In the ondensedphase, the ondensate oupies a single site for a long time and then moves to another site, thus jumpsin nmax our seldom.�nally the hubs - the nodes with highest degrees. The global stationary state is reahed with the time
τ ∼ Nz , where

z =

{

1 + α− δ for trees,
1 − δ for network with loops, (3.106)and α is the exponent from the uto� saling law kmax ∼ Nα. Below we shall disuss the dynamis of theondensate, one it is formed. This issue has not been studied yet. Although we study only simpli�edmodels, the results will allow us to derive some onlusions about how this proess looks like on S-Fnetworks.We shall onsider the dynamis on a single-inhomogeneity network introdued earlier. It is a verygood andidate to examine how inhomogeneities in�uene the typial life-time of the ondensate. In orderto determine this typial time T̄ after whih the ondensate melts, we should �rst de�ne this quantityproperly. We have seen in the �gure 3.12 that for small homogeneous systems it was impossible to reah agood agreement with theoretial preditions. One of the reasons might be that, in fat, the rossing time[100℄ has not muh to do with jumps in the position nmax. On the other hand, the approah presentedthere seems to work not only for homogeneous systems so we hope to suessfully apply it to our ase. Itis therefore onvenient to onsider the quantity Tmn - the average time it takes to fall from m to n ballsat the ondensed site, or more preisely, the �rst passage time from the state with m balls to the statewith n balls at that site. Tmn an be easily estimated from omputer simulations - one starts to ountthe time when m1 passes through m, and stops when it passes through n for the �rst time. Repeatingthis many times one gets the average time.This quantity an be ombined with a typial life-time T̄ using the following piture: in the ondensedphase, the node with maximal degree takes an extensive number of balls ∆ while for the remaining nodes

mi's �utuate around the average number ρc ≪ ∆. We suppose these �utuations to be muh fasterthan the life-time of the ondensate. The ondensate disappears when m1 ≈ ρc. Thus T̄ ≈ Tmn where
m ≈ ∆, n ≈ ρc. The averaging should atually be done over all possible value ofm,n with the appropriateweight. How to hoose this weight and how to �nally alulate T̄ will be explained later. Now we wouldlike to fous on the time Tmn for given m and n.To alulate Tmn we adopt the method presented in Ref. [100℄. We assume that the ondensate an beonsidered as slowly hanging in omparison to fast �utuations in the bulk. Suppose that at partiulartime, the ondensate has m balls. After one time step, the ondensate an loose one ball, gain one ballor remain intat. Let us denote by λm the probability that m → m + 1 and by µm that m → m − 1.Assume additionally that µ0 = 0, λM = 0 and µm≥1, λm<M are greater than zero. One an see that Tmnhas to ful�ll the following equation:

Tmn = 1 + λmTm+1,n + µmTm−1,n + (1 − λm − µm)Tmn, (3.107)with Tnn = 0. De�ning dm = Tmn − Tm−1,n we rewrite that equation in the form:
dmµm − λmdm+1 = 1. (3.108)With zero on the right-hand side it would have a solution dm =

∏m−1
k=1 µk/λk. In general, the solution56
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Figure 3.12: Average periods of time between jumps in nmax versus the density ρ, for homogeneousgraphs. The simulation has been performed on various graphs with N = 20 nodes and the jumping rate
u(m) = 1+3/m, the ritial density ρc = 1. Cirles: 4-regular graph, squares: omplete graph, diamonds:one-dimensional losed hain. Solid lines are power laws a0M

a1 �tted to data; for various graphs a1 =
3.6 . . . 4.2. The dashed urve giving the asymptoti formula (3.105) with arbitrary proportionality fatoris far away from numeris.has the form dm = cm

∏m−1
k=1 µk/λk with cm ≥ 0. The equation (3.108) gives the reursion for cm:

cm − cm+1 =
1

µm

m−1
∏

k=1

µk/λk. (3.109)The maximal number of balls at one node is M , so it must be cM+1 = 0. With this boundary ondition,Eq. (3.109) has the solution:
cm =

M
∑

l=m

1

µl

l−1
∏

k=1

λk
µk
. (3.110)This leads to the following expression for Tmn:

Tmn =

m
∑

p=n+1

dp =

m
∑

p=n+1

(

p−1
∏

k=1

µk
λk

)





M
∑

l=p

1

µl

l−1
∏

q=1

λq
µq



 . (3.111)In our ase µm = u(m) sine it gives the probability that m → m − 1 at ith node. To �nd λm, let usonsider a Master equation for the distribution of balls πi(m) at site i:
∂tπi(m) = πi(m+ 1)µm+1 + πi(m− 1)λm−1 + πi(m)(1 − µm − λm). (3.112)In the stationary state the derivative vanishes and hene
πi(m+ 1)µm+1 − πi(m)λm = πi(m)µm − πi(m− 1)λm−1 = onst. (3.113)One sees that expressions on both sides of the last equation annot depend on m. Inserting m = 1 wesee the onstant is equal to zero. From Eq. (3.113) we obtain λm:

λm = µm+1
πi(m+ 1)

πi(m)
. (3.114)Inserting µm and λm to Eq. (3.111), after some manipulations we obtain

Tmn =

m
∑

p=n+1

1

u(p)πi(p)

M
∑

l=p

πi(l). (3.115)We now apply the Eq. (3.115) to the ase of a single-inhomogeneity graph assuming as before u(p) = 1.Let us start with the star graph as a speial degenerate ase and alulate the average transition times57



Tmn for the entral node on whih the ondensate spends almost all time. Using the formula (3.95) with
α = 1/(N − 1) for the star graph we have:

Tmn =

m
∑

p=n+1

M
∑

l=p

(N − 1)l−p
(M +N − l − 2)!(M − p)!

(M +N − p− 2)!(M − l)!
. (3.116)The terms vanish for p→ m if m≫ 1. The sum over l dereases slowly with p beause it is a umulativedistribution for π1(l) (see Eq. (3.115)). Thus for large m the transition time is almost independent of

m. This means that the ondensate �utuates very quikly around some value 1 ≪ 〈m1〉 < M . Weknow from our previous onsiderations that 〈m1〉 ≈ M and �utuations are very small, so it is enoughto onentrate on TMn. Changing variables we get
TMn = (N − 2)!

M−n−1
∑

r=0

r!

(N − 2 + r)!
(N − 1)r

r
∑

k=0

(N − 1)−k
(N − 2 + k)!

k!(N − 2)!
. (3.117)In the last sum we an set the upper limit to in�nity. We have:

TMn ≈
(

N − 1

N − 2

)N−1

(N − 2)!

M−n−1
∑

r=0

r!

(N − 2 + r)!
(N − 1)r. (3.118)The sum over r an be done approximately by hanging the variable r →M − n− 1 − r:

TMn ≈
(

N − 1

N − 2

)N

(N − 2)!(N − 1)M−n−1M − n− 1

M − n− 2

(M − n− 1)!

(M +N − n− 3)!
. (3.119)We see that, beause of the fator (N − 1)−n, the time TMn is very sensitive to n. In �gure 3.13 it isompared to omputer simulations. This ompliated formula has a simple behavior in the limit of largesystems and n = 0. For M → ∞ and N being �xed we get an exponential growth:

TM0 ∼ (N − 1)M , (3.120)while for �xed density ρ = M/N and N → ∞ it inreases faster than exponentially:
TM0 ∼ eρN lnN . (3.121)The approximated expressions (3.120) and (3.121) an be obtained very easily using a kind of Arrheniuslaw [100, 104℄, whih tells that the average life-time is inversely proportional to the minimal value of theballs distribution:
TM0 ∼ 1/πmin

1 , (3.122)if one thinks about the ondensate's melting as of tunneling through a potential barrier. In our ase thebarrier 1/π1(m) grows monotonially with m → 0 so we observe that the ondensate bounes from thewall at m = 0 rather than tunnels through it. We have πmin
1 ∼ (N − 1)−M for �xed N and large Mand thus we get Eq. (3.120), while for �xed density ρ the distribution πmin

1 falls over-exponentially whihresults in Eq. (3.121).Before we omment on the exponential behavior of times Tmn, let us alulate analogous quantitiesfor the general single-inhomogeneity graph. In the ondensed state the oupation m1 �utuates quiklyaround the mean ondensate size 〈m1〉 = ∆, with the variane estimated by Eq. (3.103) as ∼ N . Although
∆ is smaller than M we an assume that Tmn ≈ TMn for m > ∆. This is so beause the transition timebetween the states with high number of balls to the state with m ≈ ∆ must be small sine the potential
1/π1(m) dereases with m→ ∆. Therefore, we an onentrate again on TMn whih is easier to ompute.From Eqs. (3.95) and (3.115) we have:

TMn =
M
∑

p=n+1

M
∑

l=p

αp−l
(

M +N − l − 2

M − l

)

/

(

M +N − p− 2

M − p

)

. (3.123)Changing variables we get:
TMn =

M
∑

p=n+1

(M − p)!

(M +N − p− 2)!

M−p
∑

q=0

α−q (M +N − p− q − 2)!

(M − p− q)!
. (3.124)58
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Figure 3.13: The average life-time TM0 for a star graph with N = 10 alulated from Eq. (3.119) (leftpanel) and for a single-inhomogeneity graph with N = 20, k = 4, k1 = 16 from Eq. (3.127) (right panel),ompared to omputer simulations (irles).The sum over q an be approximated in the ondensed state by an integral and evaluated by the saddle-point method. The saddle point q0 = α(N − 2)/(1 − α) is equal to m∗ from Eq. (3.92) and therefore allalulations are almost idential. In this way we get:
∑

q

· · · ≈ αp × αα
N−2
1−α

−M ((N − 2)/(1 − α))!

(α(N − 2)/(1 − α))!

√

2πα(N − 2)

(1 − α)2
. (3.125)The only dependene on p is through the fator αp. To alulate TMn it is therefore su�ient to evaluatethe sum:

M
∑

p=n+1

αp
(M − p)!

(M +N − p− 2)!
. (3.126)Beause every term is proportional to 1/π1(p) from Eq. (3.95), in the ondensed state the funtion underthe sum has a minimum at the saddle point p0 ≈ m∗ ∈ (1,M). This means that the e�etive ontributionto the sum an be split into two terms: one for small p and one for p ≈ M . The �small-p� part an beevaluated like for stati distributions in the previous setion. To alulate the �large-p� part, it is su�ientto take the last two terms, namely for p = M and p = M − 1, sine the large p terms derease quiklywith p. The omplete formula for TMn is given by:

TMn ≈ αα
N−2
1−α

−M ((N − 2)/(1 − α))!

(α(N − 2)/(1 − α))!

√

2πα(N − 2)

(1 − α)2

×
[

M !

(M +N − 2)!

(

α
M +N − 2

M

)n+1(

1 − α
M +N − 2

M

)−1

+
αM−1(α(N − 1) + 1)

(N − 1)!

]

.(3.127)In Fig. 3.13 we ompare the theoretial expression for TM0 with Monte Carlo simulations. The agreementis the better, the larger M is. In the limit of large number of balls, M → ∞, while keeping N and α�xed, the life-time grows exponentially:
TM0 ∼

(

1

α

)M

=

(

k1

k

)M

. (3.128)In the limit of �xed density ρ = M/N > ρc and for M,N → ∞:
TM0 ∼ exp [N (− ln(1 − α) + ρ ln(ρ/α) − (1 + ρ) ln(1 + ρ))] . (3.129)Let us now omment on the exponential times observed for inhomogeneous graphs. Unlike in homogeneoussystems, where the life time grows like a power of M , in the presene of inhomogeneity it hanges tothe exponential behavior. This is typial for systems possessing a harateristi sale. Here it is givenby the ratio k1/k. This situation is to some extent similar to the relation between massless and massive59



interations in partile physis. A two-point funtion for a massless �eld has a power-law deay and thusan in�nite range, while for a massive �eld it falls o� exponentially with the distane.
TM0 alulated above gives us some insight into the dynamis of the ondensate. Now we try to �nda formula for T̄ that is for the average time between onseutive jumps of the position nmax of the nodewith maximal number of balls. We do not expet that the behavior of T̄ will be asymptotially di�erentfrom Tmn but we would like to hek if we understand well the proess of melting and rebuilding theondensate.The main ontribution to the average life-time of the ondensate omes from situations when itoupies the node with the highest degree. The probability that at a partiular time step the ondensatehas m balls is given by π1(m). The ondensate ends its life at a ertain m1 ≡ n number of balls whih isno bigger than at the remaining nodes, whih means that there is at least one node i 6= 1 with the sameor higher oupation: mi ≥ m1. We all this an �event A� and denote the probability of its ourreneby a(n). In order to alulate the average time T̄ we have to sum over all possible m,n, weighted byappropriate probabilities:

T̄ =
1

∑

n a(n)

M
∑

m=0

M
∑

n=0

π1(m)Tmna(n), (3.130)where the �rst fator gives an appropriate normalization of a(n). We have already alulated π1(m) and
Tmn for the single-inhomogeneity graph. What remains is to alulate a(n). We have to onsider thesubset of all on�gurations {m1, . . . ,mN} whih favor the event A. One step before A happens, we have
n+1 balls at the �rst node and no more than n balls at other nodes. The number of balls isM , thereforeat nodes 2, . . . , N there isM −n− 1 balls in total. New on�gurations whih lead to A are the following:1. n balls at the 1st node, n + 1 balls at one node among N − 1 remaining nodes, and mi ≤ n ballson eah of N − 2 remaining nodes, that is M − 2n− 1 in total on N − 2 nodes,2. n balls at the 1st node, n balls at one node among N − 1 nodes and mi ≤ n at eah of remainingnodes, with the total number of balls M − 2n on those nodes.The probability of the event A is proportional to the sum of all on�gurations desribed above:

a(n) =
1

Z(N,M)
(N − 1)

[

n
∑

m3=0

· · ·
n
∑

mN=0

δM,2n+1+m3+···+mN

+

n
∑

m3=0

· · ·
n
∑

mN =0

δM,2n+m3+···+mN

]

kn1 k
M−n. (3.131)First two fators give the normalization whih orresponds to the sum over all on�gurations and over

N − 1 possibilities of hoosing the node having exatly n + 1 or n balls. In the square braket we havenumbers of on�gurations with �xed amount of balls on nodes i = 3, . . . , N . The last two terms arise fromdegrees of nodes: the weight kn1 for the �rst and kM−n for the rest of nodes. Skipping the multipliativefator and denoting the quantity in square brakets by b(n) we have
a(n) ∝ b(n)α−n. (3.132)The oe�ient b(n) an be expressed through the following sum:

b(n) =

N−2
∑

r=0

(−1)r
(

N − 2

r

)[(

N +M − 4 − 2n− r(n+ 1)

M − 1 − 2n− r(n + 1)

)

+

(

N +M − 3 − 2n− r(n+ 1)

M − 2n− r(n+ 1)

)]

. (3.133)This formula is obtained by using the integral representation of disrete deltas in Eq. (3.131) and byalulating eah sum over mi separately.We ould now write in priniple the formula for T̄ . It would be quite ompliated so we deided not topresent it here, but it an be evaluated numerially using the theoretial formulas given above. In �gure3.14 we present the omparison between average life-times omputed from simulations and alulatedanalytially. One learly sees that while M inreases, the points approah the theoretial urve but aresystematially slightly above it. This means that T̄ is a bit larger that predited by Eq. (3.130).60
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Figure 3.14: Average life-time of the ondensate on a small-inhomogeneity graph with N = 20, k = 4and k1 = 8 (irles), k1 = 12 (squares). Empty symbols: numerial estimations, solid lines: analytialformula (3.130). Error bars are of symbols size.3.2.4 Power-law distribution in the ZRP on inhomogeneous graphsIn previous setions we have notied that there are many di�erenes between zero-range proesses onhomogeneous and inhomogeneous networks. For a homogeneous system, one an have a sale-free dis-tribution of balls π(m) if one tunes the hop rate u(m) appropriately, while for an inhomogeneous one,distributions are in general exponential. In inhomogeneous systems the ondensate, if exists, resides atthe node with the largest degree for almost all time, and even if it melts, it rebuilds very fast on this node,while in homogeneous systems the ondensate moves from node to node. For inhomogeneous systemsthe typial time-sale for melting the ondensate grows exponentially with N while in homogeneous onesonly as a power of N .The power-law distributions at ritiality are very interesting sine they are typial for systems withouta harateristi sale. Inhomogeneous systems have usually a typial sale introdued by the fat, thatthe �ows of balls are di�erent between di�erent nodes. We want to address the question whether itis possible to obtain a power-law distribution of balls oupation numbers at the ritial point also forinhomogeneous networks. As we shall see, the answer to this question is in the a�rmative, but it requiresa �ne-tuning of the node-degree distribution of the underlying network. In this setion we shall showhow to do this. We shall also disuss some well-known examples of graphs inluding Erdös-Rényi graphs,for whih the averaging over the ensemble of graphs leads to the partile distribution whih resembles apower-law, although it is only a �nite-size e�et.Unlike in previous setions, where we were interested in properties of the ZRP on a given, �xednetwork, we onsider now an ensemble of random graphs from Chapter 2. The graphs are de�ned byspeifying a desired degree distribution Π(k) in the thermodynamial limit. They an be generated bythe Monte Carlo algorithm desribed in Se. 2.1.5. In this ase, the probability P (k1, . . . , kN ) ≡ P (~k) ofhaving a network with a sequene of degrees k1, . . . , kN fatorizes for N → ∞:
P (~k) = Π(k1) · · ·Π(kN ). (3.134)This assumption means that we onsider only unorrelated networks. It is approximately ful�lled for�nite-size graphs if Π(k) falls quikly with k, as it results from the equivalene between anonial andgrand-anonial partition funtion for networks [18℄ disussed previously, sine in the grand-anonialensemble there is no onstraint on the sum of degrees. The fatorization breaks down for sale-freenetworks. Partiularly strong deviations from the fatorization are observed for Π(k) ∼ k−γ with 2 <

γ ≤ 3, where �nite-size e�ets are espeially strong [65℄. Below we shall disuss networks whih are freeof these problems and for whih the fatorization works �ne.Let us reall the partition funtion for the ZRP on a given graph:
Z(N,M,~k) =

M
∑

m1,...,mN=0

δP

i mi,M

N
∏

i=1

f(mi)k
mi

i . (3.135)We are now interested in the behavior of the ZRP on a �typial� network, taken from the ensemble ofgraphs with distribution of degrees given by Eq. (3.134). We want to average over all possible degree61



sequenes in the given ensemble. We thus de�ne a anonial partition funtion:
Z(N,L,M) =

∑

k1...kN

P (~k)Z(N,M,~k), (3.136)where L is the total number of edges in the graph whih, as in the anonial partition funtion fornetworks, is assumed to be �xed. The dependene on L we pull into the probability P (~k).To simplify alulations, we set u(m) = 1 as before, sine we expet the e�et of network inhomogeneityto be stronger than the e�et oming from the dependene of u(m) onm. The anonial partition funtion(3.136) assumes now the form:
Z(N,L,M) =

∑

~m

δP

i mi,M

N
∏

i=1

µ(mi), (3.137)where µ(m) is the mth moment of the degree distribution Π(k):
µ(m) =

∞
∑

k=1

Π(k)km. (3.138)This partition funtion has exatly the form of the partition funtion (3.56) for homogeneous ZRPs,whih we have disussed before. This shows that averaging over unorrelated networks is equivalentto onsidering another ZRP, for a homogeneous system. The averaging smears the inhomogeneity andrestores the symmetry with respet to the permutation of oupation numbers. Instead of f̃i(m), distintfor di�erent nodes, we have only one f(m) ≡ µ(m), idential for all nodes. Moreover, we will see that ifall the moments µ(m) exist, the system is self-averaging in the sense that for large N a single networktaken from the given ensemble reprodues the limiting distribution of balls.After these preliminaries we are now ready to attak the main question, namely how to hoose Π(k)in order to obtain a sale-free distribution of balls oupation numbers: π(m) ∼ m−b, at the ritialpoint. From setion 3.2.2 and Eq. (3.137) we see that µ(m) should behave as m−b for large m. Thus weare looking for the degree distribution Π(k) whih gives the following moments (3.138):
µ(m) =

Γ(m+ 1)

Γ(m+ 1 + b)
φm. (3.139)This partiular form of µ(m) is well suited for analytial alulations, but of ourse we expet a similarbehavior for any other µ(m) having the asymptoti behavior ∼ m−b. The exponential term φm does nothange the π(m) at the ritial point ρc, sine for onserved number of balls it gives only an overall fator

φM in Z(N,L,M). We shall use the freedom of hoie of φ to adjust the mean value of the distribution
Π(k) to the average degree k̄ = 2L/N whih is �xed in the ensemble with given N,L. Introduing agenerating funtion

M(z) =
∞
∑

m=0

µ(m)
zm

m!
=

∞
∑

m=0

(zφ)m

Γ(m+ 1 + b)
, (3.140)we an reover Π(k) for k > 0 as a Fourier oe�ient by means of the inverse transform:

Π(k) = N 1

2π

∫ π

−π

dz eizkM(−iz), (3.141)where N gives appropriate normalization, sine M(−iz) is by de�nition equal to ∑k Π(k) exp(−izk).The integral in Eq. (3.141) is in general hard to alulate and express through speial funtions like sineand osine integral. However, the funtion M(−iz) falls to zero with z → ±∞ su�iently fast and thusfor φ ≫ 1 we an extend the limits of integration to ±∞. Then equation (3.141) beomes a FourierTransform of the funtion M(−iz) from Eq. (3.20), introdued in setion 3.1.2. Hene we know that itan be written as an in�nite series expansion (3.22) (see also [62℄). This ompliated expression simpli�esvery muh in the present ase. Changing variables k → xφ we have
Π(xφ) =

N
2πφ

∫ ∞

−∞

dz eizx
∞
∑

m=0

(−iz)m
Γ(m+ 1 + b)

. (3.142)and we an now apply the results of setion 3.1.2. Aording to Eq. (3.22), the last integral gives
N
φ

∞
∑

k=0

(−x)k
k!Γ(b− k)

, (3.143)62
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Figure 3.16: Desired (dotted line) versus real µ(m) for �nite networks (solid lines) obtained fromEqs. (3.144) and (3.138), for b = 3. Lines from left to right: φ = 5, 10, 20, 40, 80, whih orrespondsto k̄ = 1.67, 2.89, 5.4, 10.4, 20.4 from Eq. (3.146). These plots approximate also π(m) at the ritial point,for in�nite networks. The parameter φ grows almost linearly with k̄.and hene
Π(k) =

N
φ

∞
∑

q=0

(−k/φ)q

q!Γ(b− q)
= (φ− k)b−1 N

Γ(b)φb
. (3.144)In �gure 3.15 we show Π(k) alulated from the exat equation (3.141) and from the approximatedone (3.144). Beause the probabilisti interpretation of Π(k) requires that it must be non-negative, thesolution (3.144) is physial only for k ≤ φ. So we have to set Π(k) = 0 above φ. Thus ⌊φ⌋ an beinterpreted as the maximal degree existing in the network. One must be, however, aware that even thetrue Π(k) alulated diretly from Eq. (3.141) an be negative above φ and that utting the negative partleads to some disrepany between the desired µ(m) from Eq. (3.139) and that obtained when (3.144) isinserted into Eq. (3.138). Hene we must make sure if we really have π(m) ∼ m−b at the ritial point.The answer is that for any �nite network we an always hoose φ so that the disrepany between thepower-law behavior and the real µ(m) beomes negligible. In �gure 3.16 we plot the desired funtion µ(m)and we ompare it to that alulated for various φ from Eqs. (3.138) and (3.144). As φ inreases, the plotstend to the power law. We see that in order to get the orret ball distribution in the thermodynamilimit we have to sale k̄ to have limN→∞ k̄ = ∞. Suh networks with Π(k) given by Eq. (3.144) areneither sparse nor very dense sine k̄ sales with a power of N less than one.The parameter φ is related to the average degree by the formula: k̄ =

∑φ
k=1 Π(k)k. The normalization

N must be hosen so that ∑φ
k=1 Π(k) = 1. The sum goes from one beause there an be no isolated63



nodes (k = 0) on the graph. When b = 2, 3, 4, one is able to �nd losed formulas for the normalizeddegree distribution Π(k). For instane, for b = 3 we have
Π(k) =

(φ− k)2

φ(φ− 1)(2φ− 1)
, (3.145)for 0 < k ≤ φ and zero for k = 0 and k > φ, with φ given by the following expression:

φ =
(

−1 + 4k̄ +
√

1 − 16k̄ + 16k̄2
)

/2. (3.146)In general, for large φ, the relation between φ and k̄ is almost linear:
k̄ =

∑φ
k=1(k − φ)b−1k
∑φ

k=1(k − φ)b−1
≈
∫ φ

0
(φ − k)kb−1dk
∫ φ

0 kb−1dk
=

φ

b+ 1
. (3.147)Beause φ grows with k̄, one should take graphs large enough to minimize �nite-size orretions. In otherwords, the ratio φ/N should be muh smaller that 1.We performed Monte Carlo simulations of the ZRP on random networks with the degree distribution(3.144) to hek whether one indeed obtains a power law in the distribution of balls π(m). The simulationswere made as follows. First we generated a onneted graph from the ensemble of random graphs withthe degree distribution from Eq. (3.144), using the Monte Carlo algorithm desribed in previous hapter.The graph had no degree-degree orrelations, exept of those introdued by �nite-size e�ets. On thatgraph we simulated the zero-range proess starting from a uniform distribution of balls. We olleteda histogram of π(m) and repeated the simulation for other networks from the ensemble. In total, wegenerated over 50 networks for the given set of parameters N,M,L.The ruial point is to ensure that those graphs are onneted. The Monte Carlo algorithm presentedbefore generates in priniple graphs whih may have disonneted parts. But we know (see e.g. [1℄)that for random graphs there exists a ritial average degree k̄c (a perolation threshold), above whih asingle omponent is always formed in the limit of N → ∞. In our simulations we always heked thatwe were above k̄c and that the graph we used was onneted. We also simulated tree graphs whih areby de�nition onneted. For trees, however, �nite-size e�ets are stronger than for graphs.In �gure 3.17 we ompare a theoretial distribution at the ritial point ρc = 1 for b = 3, withexperimental ones obtained by numerial simulations. The agreement is not perfet. Finite-size e�etsare strong. But we see an apparent power law in the distribution of balls. The urves shown in �gure3.16 would suggest that for k̄ = 8, the power law should ontinue up to m of order 100. In �gure 3.17we see that it deviates already before, probably beause it is not exatly at the ritial point. Indeed, weobserve a reminisene of the ondensation suggesting that the system is already o� the transition point.These deviations are indued by the fat that for any �nite graph there is a ondensation on the mostinhomogeneous node [99℄. This gives a peak in π(m). Beause the ondensate takes an extensive numberof balls, it e�etively inreases the ritial density for the rest of the system, so we are slightly below ρc.In �gure 3.18 we present results for large networks, but without averaging over the ensemble. Weagain get a power law whih indiates that a self-averaging takes plae. As before, the experimental linedoes not agree ideally with the theoretial one, π(m), but the power-law behavior is lear.The argumentation presented above suggests that one has to �ne-tune the degree distribution inorder to obtain the sale-free distribution of the number of balls. What happens if one takes di�erentdistributions? We have performed the ZRP also on some other networks and surprisingly found that

π(m) seems to be also heavy-tailed. In �gure 3.19 we show results of numerial experiments for randomtrees [37℄ and ER random graphs. Random trees are equilibrated trees with weights p(k) = 1 and havebeen already mentioned in Se. 2.1.4. They an be generated using the Monte Carlo algorithm given inSe. 2.1.5. The degree distribution for random trees reads
Π(k) =

e−1

(k − 1)!
, (3.148)for k > 0 and Π(0) = 0. For ER graphs, Π(k) is approximately Poissonian as we know from Eq. (2.5).In �gure 3.19 we see the results of measuring π(m) on networks of size of order few hundreds. Thedistribution π(m) seems to follow a power law, in a ertain range. In order to hek whether this rangeinreases in the large N limit, one would have to perform a systemati analysis for networks of growingsizes.However, here we prefer to present some theoretial disussion of whether it an be a power-lawor rather some other distribution. Let us alulate the theoretial distribution π(m) = µ(m) at the64
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Figure 3.17: The distribution of balls in the ensemble of graphs with degree distribution Π(k) ∼ (φ−k)2.Solid line: theoretial π(m) ∼ m−3 at the ritial point ρc = 1 and for in�nite system. Cirles: for treeswith N = M = 400, averaged over 50 graphs, φ ≈ 6. Squares: for simple graphs with N = M = 400,
k̄ = 8, φ ≈ 30, diamonds: as before but M = 300, triangles: N = 800,M = 600.
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Figure 3.18: Demonstration of self-averaging: π(m) for a single network with degree distribution Π(k) ∼
(φ − k)2, for two di�erent sizes N = M = 5000 (thin solid line) and 10000 (dashed line) and k̄ = 16.For eah ase four networks were generated to estimate error bars. Only a few experimental points areshown for brevity. The thik solid line gives the asymptoti distribution.
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Figure 3.19: The experimental distribution of balls averaged over 200 graphs taken from the ensembleof random trees and ER graphs. Cirles: ER graphs N = 400,M = 300, k̄ = 8, squares: as before but
N = 800,M = 450, diamonds: ER with N = M = 400, k̄ = 16, triangles: trees with N = 800,M = 300.Thik lines show power laws π(m) ∼ m−b with b = 4.87 (upper line) and 5.52 (lower line).65
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Figure 3.20: The distribution π(m) obtained from Eq. (3.138) with ut Poissonian degree distribution.The almost straight line on the log-log plot explains partially the quasi-power-law observed in numerialexperiments in the �gure 3.19.ritial point, in the thermodynamial limit. For random trees, the generating funtion M(z) de�ned inEq. (3.140) has a losed form: M(z) = exp(z + ez), as follows from Eq. (3.148). The funtion µ(m) isgiven by the inverse Laplae transform:
µ(m) =

m!

2πi

∮

M(z)z−m−1dz, (3.149)whih an be evaluated by the saddle-point integration around z0 ≈ ln(m/ lnm):
lnµ(m) = m(lnm− ln lnm) +O(m), (3.150)and hene µ(m) grows over-exponentially for large m. The hop rate u(m) for an equivalent homogeneousZRP deays fast with m. This means that the ondensation happens for any density of balls, andthe bulk distribution falls faster than any power-law. Similarly, one an estimate that for random ERgraphs M(z) ∝ exp(k̄ez) − 1 and hene the leading term in lnµ(m) is also m lnm, so we again have theondensation.It is lear from the above arguments that in the limitM → ∞ one annot obtain power-law distributionof balls for maximally random graphs like ER graphs or random trees. If it is not a power law, how thebehavior in Fig. 3.19 an be explained? For �nite systems, we observe that the power law goes only overone-two deades, so it an be easily onfused with another funtion. Suh a quasi-power-law behavior ispresented in Fig. 3.20, where we have alulated π(m) for �nite-size ER graph by means of Eq. (3.138)multiplied by a fator exp(−mβ). In order to mimi suh �nite-size e�ets we have assumed that thedegree distribution Π(k) had a uto� at some kmax alulated from the ondition that in n = 200 samplesof graphs of size N = 400 it should be around one node with degree kmax: nNΠ(kmax) ≈ 1, and hene

kmax ≈ 22. The fator β has been hosen to get an almost straight line on the plot. Normally this is doneby the fator Z(N − 1,M −m)/Z(N,M) in the formula for distribution of balls, and in real simulationsby taking an appropriate value of M , whih brings the system to the ritial density ρc.To summarize the disussion of this subsetion, we have shown that tuning the node-degree distribu-tion Π(k) on a random network, on whih the zero-range proess is de�ned, one an obtain the powerlaw in the balls oupation distribution π(m). This makes the system sale-free at the ritial point, inontrast to the previously disussed single-inhomogeneity graphs. The key point is that although degreesof nodes di�er, their distribution is so tuned that averaging over distributions of balls for nodes withdi�erent degrees gives exatly the power law. On every single node i, however, the distribution of balls isnot a power law, but it falls exponentially as (ki/kmax)
m. The only exeption is the node with maximaldegree kmax, where the ondensation takes plae.This is not the ase for maximal random graphs like ER graphs, where the degree distribution isonentrated around k̄ and the ZRP behaves like for a homogeneous system with onstant hop rates,having an over-exponential deay in π(m) for small m and a ondensation peak at large m. The situationis similar to that for S-F networks, where the node-degree �utuations are strong enough to produe anode of degree muh larger than other degrees. This node attrats the ondensate [97℄.66



Chapter 4Conlusions and outlookComplex networks have been widely studied in reent years. Being a disipline on the interfae of physis,hemistry, biology, soial and omputer sienes, and others, it applies a variety of methods. Most peopletry to understand observed properties of networks by introduing simpli�ed models and then by makingomputer simulations in order to ompare results to real-world data. Some of them use a multitude ofso-alled mean �eld approahes, when the quantity of interest is assumed to evolve in an averaged �eldof all interations. This, however, an rarely allow one to examine suh e�ets like phase transitions orondensation, and the results an be only qualitative. Moreover, some problems may be ill-posed whenone does not speify what the word �averaged� means. In this thesis we have tried to present a onsistenttheory of statistial mehanis of omplex networks, where all problems an be formulated in terms ofsome averaged quantities over a well-de�ned statistial ensemble. The starting point of the formulationis the ensemble of Erdös-Rényi graphs, where all graphs have the same statistial weight. But we haveseen that ER graphs weakly reprodue features observed in real-world networks. Therefore, we haveassigned di�erent statistial weights to graphs from the same set, enhaning the probability of ourreneof graphs of a ertain type. For instane, by assigning to eah node a funtional weight p(k) depending onits degree k, we have been able to obtain any desired degree distribution, either for simple or degeneratedgraphs, for trees or graphs with yles, and for ausal as well as for equilibrated networks. In partiular,we an reprodue for equilibrated networks the sale-free degree distribution, one of the most importantproperties of real networks. We have shown also how the approah via statistial ensemble an be used toalulate degree-degree orrelations or the assortativity oe�ient. We have pointed out that the samemethod an be used for growing networks. We have disussed how to reformulate models of preferentialattahment in the language of network's ensembles and how to relate them to the rate-equation approah,whih is a very powerful analytial method.At the end of disussion devoted to statistial ensembles of graphs we have presented a omparisonbetween growing and equilibrated networks. We have shown how to hoose funtional weights in bothensembles, in order to obtain the same power-law degree distributions and not to introdue node-nodeorrelations. Then we have foused on some global properties like the assortativity or the diameter. Wehave found that both types of networks are disassortative but that the degree-degree orrelation funtion
ǫ(k, q) exhibits di�erent behavior for these graphs. We have observed a similar di�erene for the diameter,whih sales like lnN for growing unweighted networks, also for growing trees, thus indiating the small-world behavior, while for equilibrated unweighted trees it grows like ∼ N1/2. In other words, we haveexpliitly shown that graphs in the two ensembles, despite having idential degree distributions, may haveompletely di�erent geometrial properties. In this partiular ase, the origin of the di�erenes, shortlyspeaking, omes from the fat that the set of ausal graphs forms only a small subset of all possiblegraphs in the statistial ensemble, and the properties of that subset are quite di�erent to those observedas �typial� for the whole set.Further di�erenes between various graphs with the same degree distribution have been disussed inChapter 3. Using analytial and numerial methods we have tested theoretial preditions for the positionof the uto� known from the literature on the subjet. We have enountered an unexpeted di�erenebetween the values of the exponent α, desribing the saling of the uto� kmax with the network size, forausal and equilibrated trees. We have pointed out that the two estimates of kmax for simple equilibratedgraphs found in the literature seem to be inonsistent in light of results presented in this thesis. As aby-produt of this analysis we have developed a method of alulating the uto� funtion w(x), whihallows one to treat many models of growing networks in a uni�ed, standard fashion.In the seond part of Chapter 3 we have disussed dynamis on networks. We have studied the67



zero-range proess, being just the balls-in-boxes model with a ertain type of loal dynamis. We haveshown that for inhomogeneous systems, that is when node degrees di�er muh from eah other, statiand dynamial properties of the system are di�erent than those for homogeneous systems studied in thepast. For instane, when the inhomogeneity is strong enough, it triggers the ondensation on the mostinhomogeneous node. The ritial density of balls, above whih the ondensation takes plae, dependson k1/k, where k1 is the largest degree and k is the typial degree in the network. In partiular, onS-F networks the ZRP always develops the ondensation. Another interesting e�et of inhomogeneityis a qualitative hange in the behavior of a typial life-time of ondensate, whih grows exponentiallyor faster, in ontrast to homogeneous systems where it grows only as a power of the system size. Wehave seen also that the e�et of inhomogeneity an be weakened for some node-degree distributions. Inpartiular, we have found a speial form of the distribution Π(k) ∼ (φ − k)b−1, for whih the system ofballs behaves very muh like on a homogeneous networks at the ritial point, where the distribution ofballs oupation number is sale-free: π(m) ∼ m−b.At the end, let us say a few words about possible diretions of further studies, and onepts whihan be an interesting ontinuation of ideas disussed in this thesis. Among many interesting ideas, it is ofthe primary interest of the author to study dynamial proesses taking plae on dynamially rearrangednetworks. Suppose that the ZRP an interat with the topology of the underlying network and hangeit while the oupation of nodes is hanging. A slow hange in the network's struture should be wellapproximated by averaging of the ZRP over an ensemble of stati networks as it was done in Se. 3.2.4.If the network evolves quikly in omparison to the harateristi time of the ZRP, its evolution an beviewed as a sequene of rewirings as those desribed in setion devoted to Monte Carlo simulations, butwith additional weights for nodes, depending on the state of the ZRP. It is very interesting to study whathappens in between, that is when the two harateristi time sales are omparable.Another lass of problems where this kind of the two-fold evolution beomes important is related toneural networks. If one ouples the evolution of neuron's states to the evolution of onnetions betweenthem, one observes a self-organized ritiality that produes a S-F network and a small-world [105℄. Thequestion is whether one an mimi this behavior using a simpler model, or to predit it analytially inthe framework desribed here.There are also many other questions, for instane if one an use the approah via moments of thedistribution Π(k) to estimate the uto� in some other models of growing networks, espeially with degree-degree orrelations, or how the properties of ausal networks hange when, after a ertain time, we allowfor some rewirings that homogenize the network. As the example of Watts and Strogatz's small-worldmodel shows, an interesting behavior is possible. We hope to address these and other problems in thefuture investigations.
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