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Abstra
tThe s
ien
e of 
omplex networks is a new interdis
iplinary bran
h of s
ien
e whi
h has arisen re
entlyon the interfa
e of physi
s, biology, so
ial and 
omputer s
ien
es, and others. Its main goal is to dis
overgeneral laws governing the 
reation and growth as well as pro
esses taking pla
e on networks, like e.g. theInternet, transportation or neural networks. It turned out that most real-world networks 
annot be simplyredu
ed to a 
ompound of some individual 
omponents. Fortunately, the statisti
al me
hani
s, being oneof pillars of modern physi
s, provides us with a very powerful set of tools and methods for des
ribing andunderstanding these systems. In this thesis, we would like to present a 
onsistent approa
h to 
omplexnetworks based on statisti
al me
hani
s, with the 
entral role played by the 
on
ept of statisti
al ensembleof networks. We show how to 
onstru
t su
h a theory and present some pra
ti
al problems where it 
anbe applied. Among them, we pay attention to the problem of �nite-size 
orre
tions and the dynami
s ofa simple model of mass transport on networks. In parti
ular, we 
al
ulate the 
uto� fun
tion for �nitegrowing networks in the generalized Barabási-Albert model and show how the maximal degree observedin su
h a network depends on its size and on the exponent γ in the power-law degree distribution. Weshow that this stru
tural 
uto� is gaussian only for γ = 3, and is never exponential for 2 < γ < 4. Inparallel, we present numeri
al results for equilibrated networks, that is networks obtained in a sort of�thermalization� (randomization) pro
ess. We dis
uss also similarities and di�eren
es between growingand equilibrated networks. Con
erning dynami
s on networks, we study so 
alled zero-range pro
essbeing a system of parti
les hopping between sites of a network. We dis
uss known results for its stati
and dynami
al properties on homogeneous networks, where all nodes have the same degrees, and derivenew predi
tions for inhomogeneous graphs. We show that when the density of parti
les passes a 
ertainthreshold, a 
ondensate emerges at the most inhomogeneous node. Its life-time grows exponentially withthe size of the system, 
ontrary to homogeneous graphs where it grows only like a power law. We �ndalso a spe
ial type of an inhomogeneous network, for whi
h the average distribution of balls is s
ale-freeat the 
riti
al point.

http://arXiv.org/abs/0704.3702v1


Prefa
eThis is a slightly modi�ed text of the PhD thesis written as a part of the author's PhD studies in theoreti
alphysi
s under the supervision of Prof. Z. Burda, and defended on April 5th, 2007, at the Fa
ultyof Physi
s, Astronomy and Applied Computer S
ien
e, Jagellonian University in Cra
ow, Poland. In
omparison to the o�
ially a

epted do
toral dissertation, available from Jagellonian University Library,this version has been 
hanged a

ording to some 
riti
al remarks of referees and other people who read itbefore and after the defense. In parti
ular, some typos and errors in formulas have been 
orre
ted, andsome referen
es added or updated. There are also some minor 
hanges. For instan
e, in the original textwe used the word �homogeneous� to refer to a 
ertain type of networks. We repla
ed it here by the word�equilibrated� whi
h, as we realized, better relfe
ts the stru
ture of these networks and does not lead toa 
onfusion with another, 
ommonly a

epted meaning. The 
ontents is, however, almost un
hanged, sois the order of all 
hapters, se
tions et
.
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Chapter 1Introdu
tion1.1 S
ien
e of 
omplex networksWe live in the world dominated by networks, either in te
hnologi
al or so
ial sense. Who 
an nowimagine our existen
e without ele
tri
 power transmission lines, organized in a kind of network withnodes being power plants or transformer substations, or without the Internet, the most powerful mediumof the 21th 
entury? In fa
t, networks surround us. We ourselves are also a part of a huge networkof interpersonal 
onta
ts, where ideas or diseases 
an spread. Highways, subways, air tra�
 as well ass
ienti�
 
ollaborations or sexual 
onta
ts' networks are just a few further examples. Some of them are realphysi
al networks (the Internet), some of them des
ribe non-physi
al relations between obje
ts (the WorldWide Web), being de�ned in some abstra
t spa
e. During the last de
ade, networks be
ame a subje
t ofinterest of s
ientists who want to dis
over general laws governing their formation and growth. It is a greatsu

ess that despite an enormous variety of networks and essential di�eren
es in their physi
al stru
ture,it is possible to �nd su
h laws, applying to the majority of real-world networks. The most importantobservation is that these networks are 
omplex, what means that their properties 
annot be simplyredu
ed to a 
ompound of individual 
omponents. Instead, a new quality emerges when many obje
tsare linked together forming a network. Therefore, the redu
tionism - a powerful tool of physi
s - failswhen one tries to examine 
omplex networks. Fortunately, one bran
h of physi
s, namely the statisti
alme
hani
s, provides us with an ideal set of tools, methods and ideas for des
ribing and understandingthese sophisti
ated systems. The appli
ation of these ideas to 
omplex networks un
overs unexpe
ted
onne
tions to other areas of physi
s, as for instan
e to per
olation or Bose-Einstein 
ondensation.In re
ent years, many properties of real-world networks have been des
ribed. Many models have beenproposed. As a result, a new inter-dis
iplinary s
ien
e, the s
ien
e of 
omplex networks, has emerged onthe interfa
e of physi
s, 
hemistry, biology, 
omputer s
ien
e and other dis
iplines. It is not the intentionof author to review all important results of the s
ien
e of 
omplex network in this short introdu
tory
hapter. For a review, we refer the reader to ex
ellent papers [1, 2, 3℄, or to a newer one [4℄ presentingalso some re
ent developments in the �eld. However, to give a better 
omprehension of results presentedin this thesis and to make it self-
ontained we shall des
ribe some ideas whi
h are espe
ially important forour purposes. So in the next se
tion of this 
hapter we shall dis
uss some basi
 
on
epts of graph theory,whi
h provides a natural framework for des
ription of networks. Then in the subsequent se
tion we shallre
all the empiri
al �ndings on real-world networks whi
h have motivated the outbreak of interest in the�eld and then the rapid development of the s
ien
e of 
omplex networks in re
ent years. The explanationof the observed real-world properties is still the main obje
tive of many s
ienti�
 publi
ations. In thelast se
tion of this 
hapter we shall brie�y dis
uss the aim and the s
ope of the thesis.1.2 Graphs as models of networksThe material presented in this se
tion is intended to give the reader a brief introdu
tion to the notationand some basi
 
on
epts developed by mathemati
ians in graph theory and then widely a

epted by the
ommunity of 
omplex networks. All the de�nitions given here and also many others 
an be found forexample in the book [5℄. The reader familiar with graph theory may skip this se
tion.It is probably a trivial statement that a network 
an be represented as a graph, a mathemati
al obje
t
onsisting of a set of nodes (
alled also verti
es or sites) and a set of edges (links), whi
h are related byin
iden
e relations. The nodes are joined by edges and the whole obje
t is usually represented graphi
ally1
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Figure 1.1: Left: an example of an undire
ted pseudograph with seven nodes and eight edges. The nodesare labeled for 
onvenien
e. The node 7 is dis
onne
ted from the main body. The node 3 has a loop that isa self-
onne
ting link. There is a double-link between the nodes 4 and 5. If the graph were simple, it wouldhave neither multiple- nor self-
onne
tions. The degrees of all nodes are 1, 3, 5, 4, 2, 1, 0, respe
tively. Inaddition, there is a triangle on the nodes 2, 3, 4. Right: an example of dire
ted pseudograph with
N = 6, L = 10.as in Fig. 1.1. For ea
h edge the in
iden
e relation says whi
h nodes are its endpoints. In the thesis weshall denote the total number of nodes and links in the graph by N and L, respe
tively. While referringto graph's size we shall usually mean the number of nodes. Nodes shall be denoted by small Latin letters
i, j, . . . . For simple graphs (see below), ea
h link is uniquely determined by a pair (i, j) of nodes beingits endpoints.For many purposes it is 
onvenient to di�erentiate between a dire
ted graph, where every link i → jpoints only in one dire
tion, and an undire
ted graph for whi
h links do not have orientation. In Fig. 1.1we show examples of an undire
ted and a dire
ted graph. Not every edge must 
onne
t distin
t verti
es.An edge whi
h has two identi
al end-points is 
alled a loop or a self-
onne
tion. If two nodes are
onne
ted by more than one link, the 
orresponding links are 
alled a multiple-
onne
tion or multiple-links. One is often interested in graphs without self- and multiple-
onne
tions, whi
h are 
alled simplegraphs or sometimes Mayer graphs, in 
ontrast to graphs with self- or multiple-
onne
tions whi
h are
alled pseudographs or degenerate graphs. In the 
ourse of this work we will see however that in somerespe
ts pseudographs are more 
onvenient for analyti
al treatment. A graph is fully des
ribed by itsadja
en
y matrix A, whose entries Aij give the number of edges between nodes i, j. In this thesis we shallmainly 
onsider undire
ted graphs, for whi
h A is symmetri
: Aij = Aji. Be
ause ea
h self-
onne
tion
an be viewed as two links: one going out and one going in, it is 
onvenient to de�ne diagonal elementsof A to be equal to twi
e the number of loops in
ident with the node: Aii = 0, 2, 4, . . . . Alternativelythe fa
tor of two for the diagonal elements 
an be attributed to the fa
t that ea
h loop is in
ident withthe vertex two times. Of 
ourse for simple graphs, all diagonal elements vanish: Aii = 0 and o�-diagonal
Aij are either zero or one.The most important lo
al quantity 
hara
terizing a graph is node degree. The degree ki of node i isjust the number of links in
ident with the node: ki =

∑

j Aij . In 
ase of dire
ted graphs one 
an de�nethe out- and in- degree separately, for outgoing and in
oming links. For a simple undire
ted graph, thenode degree is equal to the number of nearest neighbors of the given node, that is nodes linked to it byan edge. The average degree k̄ of a graph is the average number of links per one node, that is k̄ = 2L/N ,be
ause ea
h link is 
ounted twi
e in the sum ∑

i ki = 2L. We shall use the notation k̄ when N,L are�xed, as for instan
e for the given network, or 〈k〉 when N or L may �u
tuate, as for instan
e for networksin the given statisti
al ensemble.A graph is said to be dense if the average degree is of order O(N) for N → ∞ or to be sparse if k̄approa
hes a 
onstant in this limit. A spe
ial example of a dense graph is a 
omplete graph for whi
hevery pair of nodes is 
onne
ted by an edge, and thus L = N(N − 1)/2 and k̄ = N − 1, and of a sparsegraph is an empty graph with L = 0 and k̄ = 0. There are more spe
ial graphs having their own names,some of whi
h will be mentioned in the next 
hapters.A subgraph is a graph de�ned on a subset of nodes whi
h are 
onne
ted by links preserving thein
iden
e relation of the whole graph. The simplest subgraphs are a line (a single edge joining two nodes)or a triangle: three nodes joined together by three links, see Fig. 1.1. Small subgraphs are 
alled motifsin the language of 
omplex networks and will be dis
ussed later.A path joining nodes i1 and in is a set of all nodes i1, . . . , in, where all intermediate nodes are distin
tand every pair ik, ik+1 is 
onne
ted by a link. In other words, it is a walk whi
h starts from i1, ends2
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��Figure 1.2: A tree graph with N = 8 nodes and L = 7 edges. Note that for any tree L = N − 1.in in and goes along links through the network, visiting ea
h node no more than on
e. The length of apath is just its number of links. A shortest path (there may be more than one) between a pair of nodesis 
alled geodesi
 path, and the length of this path is 
alled geodesi
 distan
e. The longest geodesi
 fromall possible paths is 
alled a diameter of graph. The average geodesi
 distan
e is sometimes also 
alleddiameter, but stri
tly speaking it is quite a distin
t quantity. In this paper we shall however use thelatter de�nition sin
e it is often mu
h simpler to 
al
ulate, and moreover for graphs representing 
omplexnetworks these two quantities are strongly 
orrelated. A graph is said to be 
onne
ted if every two nodes
an be 
onne
ted by a path. Ea
h subgraph built on all verti
es whi
h 
an be 
onne
ted by a path is
alled 
onne
ted 
omponent, or just 
omponent, of the graph. When the size of a 
omponent s
ales as

O(N) it is 
alled a giant 
omponent. The graph on the left-hand side of Fig. 1.1 has two 
omponents:one has six nodes and the other only one, namely the node 7.A 
lose path is 
alled 
y
le. The simplest 
y
le is the triangle graph. A 
onne
ted graph with no
y
les is 
alled tree (Fig. 1.2). Trees play an important role be
ause on the one hand many models of
omplex networks 
an be exa
tly solved for trees and on the other hand some important 
lasses of graphslo
ally look like trees.1.3 Properties of real-world networksAll de�nitions presented in the previous se
tion have been developed by mathemati
ians long before thes
ien
e of 
omplex networks re
eived its name and be
ame popular between s
ientists working in di�erentdis
iplines. In this se
tion we shall present some of new ideas whi
h have emerged re
ently, mostly in thelast de
ade, as a result of empiri
al studies of real-world networks. Some of them have been introdu
ednot as well-de�ned mathemati
al 
on
epts but rather as �operative� de�nitions whi
h 
aptured interestingproperties of investigated networks.Sin
e the works of Milgram, Albert, Barabási, Watts, Strogatz, and many others, three 
on
epts haveo

upied an important pla
e in the s
ien
e of 
omplex networks. These are power-law (or more generally:heavy tailed) degree distributions, the 
on
ept of small-world and the 
lustering. We shall dis
uss themshortly and des
ribe how they apply to some real-world networks. All quantities and de�nitions shall begiven for undire
ted networks if it is not stated otherwise.Degree distribution. Like we said, node's degree is the number of links 
onne
ted to that node.Let us de�ne now the probability Π(k) that a randomly 
hosen node has exa
tly k links. Π(k) is 
alledthe degree distribution and 
an be obtained for any given network by making a histogram of the degreesfor all nodes. By de�nition, the degree distribution is normalized: ∑k Π(k) = 1 and its mean ∑k kΠ(k)equals to the average degree k̄. Investigations of real networks have led to a surprising result that manyof them have a power-law tail in the degree distribution:
Π(k) ∼ k−γ , (1.1)for intermediate values of 1 ≪ k ≪ N where N is the number of nodes in the network1. The valueof γ is typi
ally between 2 and 4. This di�ers 
ru
ially from what one 
an imagine either for purelyrandom networks, or for regular grids like square or 
ubi
 latti
es. In the 
ase of regular latti
es, alldegrees are the same, so Π(k) = δk,k̄, while for random graphs one 
an argue that sin
e edges are pla
edrandomly, the distribution Π(k) should be 
lose to a Poissonian one 
entered around k̄. The networkwith a power-law degree distribution is 
alled s
ale-free network (S-F), to emphasize the fa
t that thereis no typi
al s
ale in the power-law des
ribing the tail of the node degree distribution. Many models havebeen proposed to explain this feature, some of them will be presented later.Another quantity related to degrees is a two-point fun
tion ǫ(k, q) giving the probability that arandomly 
hosen edge joins two nodes of degrees k and q. The values ǫ(k, q) form a symmetri
 matrix:1For k of order N there is always some 
orre
tion, see the next 
hapter.3
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A > 0

A < 0

A = 0Figure 1.3: The assortativity A of the network and the average degree of nearest neighbors k̄nn(k). Foran un
orrelated network, the assortativity is zero and k̄nn(k) is a horizontal line. For 
orrelated networks,two s
enarios are possible: either A < 0 if the network is disassortative, or A > 0 if it is assortative.
ǫ(k, q) = ǫ(q, k). The fun
tion has the following properties:

∑

k≤q

ǫ(k, q) = 1, (1.2)
∑

q

ǫ(k, q) =
∑

q

ǫ(q, k) = kΠ(k)/k̄. (1.3)The last equality be
omes obvious when one realizes that the sum over q gives the probability that arandomly 
hosen edge in
idents on a vertex with degree k. But the fra
tion of su
h edges is just kΠ(k)and the division over k̄ gives the 
orre
t probabilisti
 interpretation. If there were no 
orrelations, theprobability ǫ(k, q) would fa
torize:
ǫr(k, q) =

kΠ(k) qΠ(q)

k̄2
, (1.4)but for almost all networks ǫ(k, q) 6= ǫr(k, q). The two-point fun
tion is, however, not 
onvenient forexamining degree-degree 
orrelations, therefore another alternative quantities based on ǫ(k, q) have beenintrodu
ed, as for instan
e an average degree k̄nn(k) of nearest neighbors of a node with degree k. It 
anbe expressed through the two-point 
orrelations as follows:

k̄nn(k) =
k̄

kΠ(k)

∑

q

q ǫ(k, q). (1.5)In Fig. 1.3 we sket
h three possible behaviors of the 
orrelations in the network, studied by means of
k̄nn(k). When this quantity grows with k, it means that the higher is degree of a node, the higher isaverage degree of its neighbors. In order to des
ribe this behavior one uses the term �assortativity� whi
his borrowed from so
ial s
ien
es. If k̄nn(k) de
reases with k, the network is said to be disassortative.One 
an easily show that in 
ase of un
orrelated degrees (1.4), the average degree of nearest neighbors is
onstant (horizontal line in Fig. 1.3). One 
an go further and redu
e assortativity to a single 
oe�
ient[6℄:

A =
Trǫ− Trǫr
1 − Trǫr . (1.6)This quantity is equal 1 for a totally assortative network: ǫ(k, k) > 0, ǫ(k, q) = 0 for k 6= q, and is negativefor disassortative networks. In the paper [7℄ a slightly di�erent quantity, namely the Pearson 
orrelation
oe�
ient, was measured for real networks. It was found that arti�
ial networks like the WWW orthe Internet are mostly disassortative, while the 
itation network or other networks des
ribing relationsbetween human beings are rather assortative.Small-worlds. The most popular manifestation of the small-world e�e
t is the �Six degrees ofseparation� being also the title of S. Milgram's book. He found that a typi
al distan
e in the network ofa
quaintan
e among people in the USA is about six. In the language of graph theory, this means that theaverage path length is six. If relationships between people formed a regular, two-dimensional grid, thenfor N = 3×108 people the average distan
e 〈l〉 would be of order 104. The experiment made by Milgramshowed that 〈l〉 grows rather as ∼ lnN . More generally, one speaks about a small-world network whenthe typi
al distan
e or the diameter grows like logarithm of the system size. It is di�erent from the 
aseof a regular latti
e in d dimensions where

〈l〉 ∼ N1/d, (1.7)4



but it agrees well with simple models of random graphs. Indeed, one 
an estimate the number of nodesof a random graph at distan
e l to some parti
ular node as k̄l. This has to be equal to N for l beingthe diameter and hen
e 〈l〉 ∼ lnN . If one de�nes a fra
tal dimension of the network as d from Eq. (1.7),one gets d = ∞ for a small-world. We will see later that random graphs of a spe
ial type, namelyhomogeneous random trees (Se
tion 2.3) do not need to be small-worlds, thus randomness per se is nota su�
ient 
ondition to trigger the e�e
t.Clustering. This is a 
ommon property of many so
ial networks whi
h des
ribes the tenden
y toform 
liques of a
quaintan
es. It is a rule that friends of our friends are often also our friends. In thelanguage of graphs this means that there are many triangles in the network. Two measures of 
lusteringare most popular. The �rst one is a global measure or a 
lustering 
oe�
ient C:
C =

3 × number of trianglesnumber of 
onne
ted triples , (1.8)where a 
onne
ted triple is a subgraph 
onsisting of three nodes with at least two links between them.For a 
omplete graph, all nodes are 
onne
ted and thus C = 1 whi
h agrees with the intuition thatthe 
omplete graph forms a big inter
onne
ted 
lique. For trees, C = 0 be
ause of the absen
e of any
y
les (and hen
e also triangles) whi
h is also intuitively 
omprehensible. For any other networks, C liessomewhere between 0 and 1. Another de�nition of the 
lustering 
oe�
ient is based on lo
al propertiesof nodes. Let i be a node with degree ki and ci be the number of edges existing between the neighborsof i, or in other words, the number of triangles having one vertex at i. Then we de�ne a lo
al 
lustering
oe�
ient:
Ci =

ci
ki(ki − 1)/2

, (1.9)whi
h is one if all neighbors of the node i are 
onne
ted. The 
lustering 
oe�
ient for the whole networkis the average of all Ci's. Both de�nitions of C are qualitatively 
onsistent and give roughly the samevalues for real networks, being rather high (typi
ally C > 0.1) in 
omparison to random graphs of thesame size where C ∼ 1/N (see Se
tion 2.1.1).After this introdu
tion to the most interested observables on 
omplex networks, let us shortly dis
usssome examples of real-world networks. Let us begin with the World Wide Web (WWW), whi
h representsthe largest network for whi
h information about topology is 
urrently available. The nodes are webpages and the edges are hyperlinks pointing from one page to another. This kind of stru
ture 
an berepresented by a dire
ted graph. It is, however, possible to 
onsider undire
ted networks where nodes areself-
ontained 
olle
tions of web pages and the undire
ted link is formed if there is any hyperlink betweenpages belonging to di�erent sites. The Web was probably the �rst network, for whi
h the power-lawdegree distribution Π(k) was dis
overed by Albert and Barabási, and Kumar et. al. [8, 9℄. The totalnumber of nodes in the WWW is of order several billions2, but until now it was impossible to sear
h thewhole network. For a subset of about N = 300, 000 nodes the exponents γin and γout in power laws for in-and out-degree distribution were estimated to be 2.1 and 2.45, respe
tively. Later these estimations havebeen 
orre
ted to 2.1 and 2.72, where both distributions were 
olle
ted on a network with 200 millionsof do
uments [10℄. The power law is observed in a range of k 
overing �ve orders of magnitude. Thenetwork 
onsidered in [10℄ had the average degree k̄ = 7.5, and the average path length around 16, whi
hagrees with the 
on
eption of small worlds sin
e lnN ≈ 19. The 
lustering 
oe�
ient has been found foranother subset of the WWW [11℄, with 1-degree nodes ex
luded and the size N ≈ 150, 000, to be about
0.11, being mu
h larger than for randomized graph of the same size.In 
ontrast to the WWW, the Internet is a physi
al network of 
omputers (nodes) and wire- orwireless 
onne
tions (edges). For the Internet treated as undire
ted network, the power law in the degreedistribution has been found to hold over three orders of magnitude with γ being in the range 2.1 − 2.5[12, 13℄. Also the high 
lustering and small-world behavior have been 
on�rmed, indi
ating a similarityof the Internet to the WWW.There is also a large 
lass of so 
alled so
ial networks. These are networks des
ribing relationships be-tween humans, either based on physi
al interpersonal 
onta
ts (movie or s
ien
e 
ollaboration networks,human sexual 
onta
ts) or non-physi
al like the 
itation network being in fa
t the graph of 
itation pat-terns of s
ienti�
 publi
ations (for a review see e.g. [1, 4℄). These networks share also some 
ommonfeatures. All of them are s
ale-free with the exponent γ varying between 2.1 for some s
ienti�
 
ollab-orations to 3.5 for the web of sexual 
onta
ts. Also the 
lustering is mu
h larger than for an analogousrandom graph. The very interesting 
ase happens for the 
itation network of papers published in Phys.2In 2004 Google stated that they indexed over 4,000,000,000 web pages. It is, however, di�
ult to de�ne, what is a singleweb page, therefore their number varies by two order of magnitude from de�nition to de�nition. Moreover, the WWWgrows very qui
kly, making all pre
ise estimations meaningless.5



Rev. D [14℄, where γ seems to be very 
lose to three, indi
ating that it 
an evolve due to the preferentialatta
hment [15℄ des
ribed below in Se
tion 2.2.1.The last 
lass of networks we want to mention are various biologi
al networks. For instan
e, one 
anstudy the metabolism of a living 
ell and 
onstru
t a graph with nodes being 
hemi
al reagents and linksdenoting possible 
hemi
al rea
tions. Again, for a network like that [16℄ the usual behavior has beenfound: the power-law degree distribution, high 
lustering and small diameter. Another type of networks,showing possible bindings between proteins [17℄, exhibits the power-law behavior with γ = 2.4 but withan exponential 
uto� above k ≈ 20.There are many other examples of networks: e
ologi
al, neural or linguisti
 ones or a network of 
allphones et
., whi
h have not been 
ited here. We de
ided to skip them be
ause the examples presentedabove are already a good sample of what one 
an �nd in real networks. The inquiring reader is referredto the review arti
les given in the �rst se
tion of this 
hapter.1.4 The aims and the s
ope of the thesisAlthough many models have been proposed to 
apture various properties of 
omplex networks, thereis a relatively small number of papers whi
h aim on formulating a sort of general theory of 
omplexnetworks from physi
ist's point of view. In su
h a theory one is interested in having a general frameworkfor modeling, 
al
ulating, 
omputing or estimating quantities of interest and explaining the existingfa
ts rather than in formulating general theorems or �nding formal proofs of statements with idealizedassumptions. Of 
ourse these two dire
tions should be developed in parallel, sin
e they are 
omplementary.Here we shall 
on
entrate on the former one, that is on pra
ti
al aspe
ts and on a physi
al theory of
omplex networks. The latter dire
tion is 
overed by the mathemati
al literature on random graphs.Therefore, the aim of this thesis is to present a theory of 
omplex networks based on statisti
alme
hani
s, where the 
entral role is played by the 
on
ept of statisti
al ensemble of graphs. This approa
hto 
omplex networks has been 
ontinuously developed over the past ten years by many people, in
ludingD. ben-Avraham, M. Bauer, J. Berg, D. Bernard, P. Bialas, G. Bian
oni, P. Blan
hard, M. Boguñá, Z.Burda, G. Caldarelli, J. D. Correia, I. Derényi, S. N. Dorogovtsev, I. Farkas, A. Fr¡
zak, K.-I. Goh, A. V.Goltsev, S. Havlin, J. A. Hoªyst, B. Kahng, D. Kim, P. Krapivsky, T. Krüger, A. Krzywi
ki, M. Lässig,D.-S. Lee, J. F. F. Mendes, M. E. J. Newman, G. Palla, J. Park, R. Pastor-Satorras, A. M. Povolotsky,S. Redner, A. N. Samukhin, T. Vi
sek, and many others. In the thesis we dis
uss ideas and methodsdeveloped in this approa
h as well as a variety of results obtained within this framework. In this general
ontext we present the original 
ontribution of the author. It is partially based on yet unpublished work.The remaining part of the thesis is divided into three 
hapters, subdivided into se
tions. Ea
h 
hapterand ea
h se
tion begin with a short introdu
tion and a summary of most important results derived there.Chapter 2 is devoted to a general presentation of statisti
al me
hani
s of networks. First, the mostimportant models are des
ribed and then they are formulated in terms of statisti
al physi
s. The approa
hvia statisti
al ensemble of random graphs is developed and it is shown how to design a very general MonteCarlo algorithm, suitable for generating various networks on a 
omputer. Also the rate equation approa
his presented sin
e it is well suited for growing networks, being the vast part of proposed models. The
hapter is ended with a se
tion on the 
omparison between growing networks and networks obtained bya pro
ess of �thermalization� (or �homogenization�) by rewiring links.Chapter 3 deals with appli
ations of these ideas to 
omplex networks. First we dis
uss �nite-size
orre
tions to power-law degree distributions. Su
h 
orre
tions are always present for �nite networks andmay signi�
antly a�e
t a
tual properties of the network. We develop an analyti
al method to evaluatethe 
orre
tions and present results of this evaluation for some S-F networks. We 
ompare the analyti
results with numeri
al simulations. In the subsequent se
tion of this 
hapter we dis
uss dynami
s takingpla
e on networks. We 
onsider a spe
ial model 
alled zero-range pro
ess. The appli
ation of the zero-range pro
ess to the des
ription of many important phenomena like mass transport or 
ondensation inhomogeneous systems has been widely dis
ussed in the literature. We 
on
entrate here on the behaviorof the zero-range pro
ess on 
omplex networks, where inhomogeneity in nodes degrees plays an importantrole. After a preliminary dis
ussion of the model we present our �ndings 
on
erning stati
 and dynami
alproperties of the pro
ess on inhomogeneous networks.Chapter 4 
ontains 
on
lusions and outlook.
6



Chapter 2Statisti
al me
hani
s of networksFor a long time networks were studied by mathemati
ians as a part of graph theory. In re
ent years ithas been dis
overed that many 
on
epts and methods of statisti
al physi
s 
an be su

essfully applied todes
ription of 
omplex networks, and many papers have been dedi
ated to the problem of formulatingprin
iples of statisti
al me
hani
s of networks (see e.g. [1, 18, 19, 20, 21℄). In this 
hapter we shallpresent some of these ideas. Although all of them originate from the same statisti
al physi
s, the natureof 
omplex networks leads to distinguishing two 
lasses of methods: those for networks being in a sort ofequilibrium to whi
h the 
on
ept of statisti
al ensembles naturally applies, and those for non-equilibriumnetworks whi
h are most naturally formulated within the rate-equation approa
h. We shall refer to thetwo 
lasses of networks as to equilibrated and growing (
ausal) networks, respe
tively. While these
ond term is 
ommonly a

epted in this 
ontext, networks belonging to the �rst 
lass are sometimes
alled homogeneous networks [22℄ or maximal entropy random networks [23℄. Here we shall use the term�equilibrated� sin
e it resembles the way how these networks are generated1.We have split this 
hapter into three se
tions. In the �rst se
tion we dis
uss equilibrated networks.We �rst present the most famous examples of networks of that type. Then we show how to formulatea 
onsistent theory of statisti
al ensembles of these networks starting from the simplest 
onstru
tion ofErdös-Rényi random graphs. We show that as
ribing non-trivial statisti
al weights to graphs from thisset we 
an produ
e networks with any desired features, as for instan
e networks having the power-lawdegree distribution, high 
lustering, degree-degree 
orrelations et
. We present also a dynami
al MonteCarlo algorithm, based on a 
onstru
tion of Markov 
hains, whi
h allows one to generate equilibratedgraphs.At the beginning of the se
ond se
tion we show some famous examples of growing networks. Thesenetworks are generated by a growth pro
ess in whi
h new nodes are atta
hed to the existing network,so by the 
onstru
tion nodes are 
ausally ordered in time. Therefore the words �growing� and �
ausal�are used to name these networks. Their growing 
hara
ter explains why the rate equation approa
h isso su

essful in this �eld. We will see, however, that 
ausal networks 
an also be des
ribed within theformulation via statisti
al ensembles whi
h in some 
ases is even more 
onvenient.In the third se
tion we present di�eren
es and similarities between equilibrated and growing 
omplexnetworks. The 
ausality manifests itself as a very strong 
onstraint that sele
ts a subset of networks fromthe 
orresponding set of equilibrated graphs. In e�e
t, �typi
al� networks in this subset usually have quitedi�erent properties than �typi
al� networks in the whole ensemble, even if networks in the two ensembleshave identi
al statisti
al weights.The ideas presented in this 
hapter have been introdu
ed earlier by many people. They are s
atteredin many papers and used in di�erent 
ontexts. Here we want to 
olle
t them and 
omment on theirappli
ability to some problems in the theory of 
omplex networks. This shall form a basis for the
onsiderations presented in the next 
hapter, where some appli
ations will be dis
ussed.2.1 Equilibrated networksAs mentioned, we shall use the term �equilibrated networks� to refer to networks whi
h are 
loselyrelated to maximally random graphs. Although they 
an be 
onstru
ted by many di�erent methods,their 
ommon feature is that nodes, even if labeled, 
annot be distinguished by any other attribute. For1In our earlier papers we often 
alled these networks �homogeneous�. In this thesis we shall reserve this word for networkswith all nodes having the same degree, like k-regular graphs, with all degrees being equal to k. This is also the most popularmeaning in the literature. 7



example, they may not be 
ausally ordered. This means that if one generates a labeled network andrepeats the pro
ess of generation many times, ea
h node will have statisti
ally the same properties asevery other node, e.g. it will have on average the same number of neighbors, the same lo
al 
lusteringet
. We stress here the meaning of the phrase �statisti
ally the same�, whi
h means that it does notmake sense to speak about a single network, but rather about a set of networks, similarly as one speaksabout the set of states in 
lassi
al or quantum physi
s. In this way a statisti
al ensemble of graphsnaturally arises as a tool for studying �typi
al� properties of networks. As we shall see later, equilibratednetworks belonging to the given ensemble are in a sort of thermodynami
al equilibrium, however it is notan equilibrium in the sense of 
lassi
al thermodynami
s, where the statisti
al weight of a state is given bythe Gibbs measure: ∼ exp(−βE), with E being the energy of the state. In the 
ase of 
omplex networksit is 
onvenient to abandon the 
on
ept of energy and Gibbs measure and 
onsider a more general form ofstatisti
al weights. Therefore su
h a 
on
ept like temperature is often meaningless, although there weresome attempts to de�ne this quantity for networks [24℄.Before we de�ne a statisti
al ensemble of equilibrated networks, we shall present some examples ofnetworks belonging to this 
lass. They were introdu
ed over the past 50 years. One of them, known asErdös-Rényi model (ER model), is a pure mathemati
al 
onstru
tion. Mu
h is known and 
an be provedrigorously for that model. In this respe
t, the ER model is ex
eptional sin
e other models invented tomimi
 some features of real networks have not been studied so thoroughly and many results are not sorigorous. After a short presentation of the ER model we shall show how to 
hange statisti
al propertiesof typi
al graphs by introdu
ing an additional weight to every graph in the ER ensemble. The resultingensemble of equilibrated graphs 
an be �exibly modeled by 
hoosing appropriate weights. For instan
e,we shall see how to obtain a power-law degree distribution, or how to introdu
e degree-degree 
orrelations.Towards the end of the se
tion we shall present a quite general Monte Carlo algorithm for generatingsu
h equilibrated weighted graphs.2.1.1 Examples of equilibrated networksAs a �rst example of a network model belonging to the 
lass of equilibrated networks we shall des
ribe theErdös-Rényi model. In their 
lassi
al papers [25℄ in 1950s Erdös and Rényi proposed to study a graphobtained from linking N nodes by L edges, 
hosen uniformly from all (N2 ) = N(N − 1)/2 possibilities.In this thesis we shall often refer to it as a maximally random graph sin
e it is totally random, that isedges are dropped on pairs of nodes regardless of how many links the nodes have already got. The only
onstraint is that one 
annot 
onne
t any pair of nodes by more than one link, so the ER graph is asimple graph. The graph 
an be 
onstru
ted in an alternative way by random rewirings. This will bedis
ussed later in se
tion 2.1.5 whi
h is devoted to 
omputer simulations. Beside the ER model there isalso a very similar 
onstru
tion 
alled the binomial model. Here one starts with N empty nodes andjoins every pair of nodes with probability p. The name of the model be
omes obvious when one realizesthat the distribution P (L) of the number of links L is given by the formula:
P (L) =

(

N(N − 1)/2

L

)

pL(1 − p)N(N−1)/2−L. (2.1)In this model, also introdu
ed by Erdös and Rényi, the number of nodes is not �xed, but �u
tuatesaround 〈L〉 = pN(N − 1)/2. This means that also the average degree k̄ is a random variable with themean 〈k〉 ∼= pN . However, be
ause real-world networks have �xed average degree while their size 
an bevery large, in order to 
ompare binomial-graphs to real-world networks one usually s
ales p ∝ 1/N . Underthis s
aling the 
orresponding graphs have �xed k̄ and thus are sparse. If one 
al
ulates the varian
e of
P (L) keeping the average degree 
onstant in the limit of N → ∞, one �nds that the varian
e grows onlyas ∼ N and that the distribution P (L) be
omes Gaussian with the relative width ∼ 1/

√
N falling to zero.Thus almost all binomial graphs have the same number of links 〈L〉 in the thermodynami
al limit andtherefore the ER and binomial graphs be
ome equivalent to ea
h other for large N . Later on we shall seethat the ER model de�nes a 
anoni
al ensemble of graphs while the binomial model - a grand-
anoni
alensemble, with respe
t to the number of edges. In Fig. 2.1 we show some examples of binomial graphsfor di�erent p.Like we have already mentioned, we are interested in properties of the model in the thermodynami
allimit, that is for very large graphs. The great dis
overy of Erdös and Rényi was that many motifs, liketrees of a given size, 
y
les or the giant 
omponent, appear for typi
al graphs suddenly when p 
rossesa 
ertain threshold value pc. The thresholds are di�erent for di�erent motifs. For p just below pc thereare almost no motifs of a given type, while for p just above pc the motifs 
an be found with probabilityone. This is similar to the per
olation transition on a latti
e. For random graphs, however, pc depends8



usually on the system size, N , and must be properly s
aled to get �xed values of 
riti
al parameters inthe thermodynami
al limit. For example, if one s
ales p as p = k̄/N , the desired average degree k̄ playsthe role of a 
ontrol parameter. In the limit N → ∞,
〈k〉 = k̄, (2.2)and the graph is sparse making it 
omparable to some real networks. One 
an ask what is the 
riti
alvalue of the 
ontrol parameter k̄, for some motifs to appear on the network. Erdös, Rényi and theirfollowers were interested in a more general problem. If one assumes that p s
ales as p ∼ N−z for large Nwith z being an arbitrary real number, what are 
riti
al values of z at whi
h some properties appear inthe thermodynami
 limit? Below we present some important �ndings.1) Subgraphs: for binomial graphs one 
an determine the threshold values of the exponent z whensubgraphs of a given type appear. One 
an argue [26℄ that the average number of subgraphs having nnodes and l edges is equal to

(

N

n

)

n!

nI
pl ≈ Nnpl

nI
∼ Nn−zl, (2.3)be
ause n nodes 
an be 
hosen out of N in (Nn) possible ways and they 
an be 
onne
ted by l edges withprobability pl. In addition one has to take into a

ount that if one permutes n nodes' labels one obtains

n!/nI di�erent graphs, where nI is the number of isomorphi
 graphs. From the formula (2.3) one 
aninfer the 
riti
al value of the exponent z for having at least O(1) subgraphs of the given type in the limit
N → ∞. For instan
e, the 
riti
al value of z for a tree of size n is zc = n/(n−1), sin
e for trees l = n−1.This means that for z ≥ 2 the only subgraphs present in the graph are empty nodes and separated edges.When z de
reases from 2 to 1, trees of higher and higher size appear in the graph. Finally for z ≤ 1 treesof all sizes are present as well as 
y
les, be
ause for 
y
les the 
riti
al zc is also 1. However, the numberof 
y
les of a given length is always 
onstant for z = 1, regardless of the size N . Thus binomial andER random graphs are lo
ally tree-like if p ∼ 1/N . Be
ause the 
lustering 
oe�
ient C is proportionalto the number of triangles (n = l = 3) and inversely proportional to the number of 
onne
ted triples(n = 3, l = 2), one sees from Eq. (2.3) that C ∼ 1/N and that it vanishes for sparse networks in thethermodynami
 limit. This is the �rst property of random graphs that disagrees with empiri
al resultsfor real networks, for whi
h, like we saw in Se
. 1.3, C is always mu
h greater than zero.2) Giant 
omponent. For the most interesting 
ase of p ∼ 1/N , there is a 
riti
al value of k̄c = 1,above whi
h a �nite fra
tion of all nodes forms a 
onne
ted 
omponent, 
alled giant 
omponent. For
k̄ = 1 it has approximately N2/3 nodes but it grows qui
kly with k̄ so that for k̄ of order 5 and large
N , more than 99% nodes belong to the giant 
omponent. All other 
lusters are relatively small, andmost of them are trees. Thus when k̄ passes the threshold k̄c = 1, the stru
ture of graph 
hanges froma 
olle
tion of small 
lusters being trees of size ∼ lnN , to a single large 
luster of size ∼ N 
ontainingloops (
y
les), and the remaining 
omponents being small trees. This behavior is 
hara
teristi
 not onlyfor ER or binomial graphs, but it is a general feature of random graphs with various degree distributions[1℄. 3) Degree distribution. For binomial graphs it is extremely simple to obtain the formula for degreedistribution Π(k), just by observing that a node of degree k has k neighbors 
hosen out of N − 1 othernodes, and ea
h of them is linked to the node with probability p:

Π(k) =

(

N − 1

k

)

pk(1 − p)N−1−k, (2.4)whi
h for large N be
omes a Poissonian distribution:
Π(k) ∼= e−k̄

k̄k

k!
. (2.5)The same fun
tion des
ribes the node-degree distribution for ER graphs in the limit of N → ∞. Forlarge k̄ the degree distribution has a peak at k ≈ k̄. Its width grows as √k̄, so random graphs with highaverage degree are almost homogeneous in the sense of nodes degrees whi
h assume values very 
lose to

k̄. This is a se
ond feature that disagrees with real networks, where Π(k) has often a heavy tail meaningthat there are some nodes with high degrees far from the mean value, 
alled �hubs�.4) Diameter. As we mentioned in Se
. 1.2 we will 
al
ulate the diameter de�ned as the averagedistan
e l̄ between pairs of nodes in the network rather than the maximal distan
e d. We expe
t that l̄is roughly proportional to d. Certainly it is a good measure of the linear extension of the network. For9



p=0.1 p=0.3 p=0.8Figure 2.1: Binomial graphs for N = 10 and various p. For p = 0.1 the graph 
onsists of separated trees.For p = 0.3 for whi
h k̄ = 2.7 we are above the per
olation threshold k̄c = 1 and the giant 
omponentemerges (fat lines in the middle pi
ture). In the limit of p→ 1 the graph be
omes dense.both de�nitions it has been found that above the threshold k̄c = 1, when a giant 
omponent is formed,the diameter grows only logarithmi
ally with the size of the graph:
l̄ ∝ lnN

ln k̄
. (2.6)We know that this behavior is 
alled a small-world e�e
t, and is almost always present in real-worldnetworks.A next 
onstru
tion, whi
h we brie�y dis
uss, is the Watts-Strogatz model [27℄. Its main featureis that it extrapolates between regular and random graphs. We start with N nodes lo
ated on a ring(see �gure 2.2). Ea
h node is 
onne
ted to K of its nearest-neighbors, so all nodes have initially degree

K. Then one rewires ea
h edge with probability p to randomly 
hosen nodes, or leave it in pla
e withprobability 1− p. Self- and multiple-
onne
tions are ex
luded. By tuning p one 
an extrapolate between
K-regular graph (p = 0) and the maximally random ER graph (p = 1). This model originally arosefrom 
onsiderations of so
ial networks, where people have mainly friends from lo
al neighborhood, butsometimes they know someone living away - these 
ases are represented by rewired long-range edges.An important feature of this model is that the network 
an have a small diameter and large 
lustering
oe�
ient at the same time. Let us 
onsider �rst the limit p = 0. The network is regular and a ring-like.Therefore, the diameter dreg ∼ N grows linearly with N . The 
lustering 
oe�
ient Creg is 
onstant andlarger than zero when N → ∞ be
ause the nearest neighborhood of ea
h node looks the same and thereare always some triangles2. On the other hand, for p = 1 we have the ER random graph for whi
h
drand ∼ lnN and Crand ∼ 1/N → 0. Watts and Strogatz found [27℄ that there is a broad range of p,where d ≈ drand and C ≈ Creg. This is the result of a rapid drop of the diameter d when p grows,while the 
lustering 
oe�
ient C 
hanges very slow. The diameter de
reases fast be
ause even a smalladdition of short-
uts whi
h takes pla
e during the rewiring pro
ess, redu
es signi�
antly the averagedistan
e between any pair of nodes. These two properties, namely high 
lustering and small-world e�e
t,agree with �ndings for many real networks. However, the degree distribution is similar to that of ERrandom graphs. There is no natural possibility to produ
e a power-law (or generally fat-tailed) degreedistribution in this model.Now we shall des
ribe the Molloy-Reed model [28, 29, 30℄ or 
on�guration model, whi
h allows for
onstru
tion of pseudographs as well as simple graphs. In the Molloy-Reed model, to build a graph with
N nodes one generates a sequen
e of non-negative integers {k1, k2, . . . , kN}, almost always as independentidenti
ally distributed numbers from a desired distribution Π(k) and interprets ki's as node degrees. Theonly requirement is that the sum k1 + k2 + · · · + kN = 2L is even. In the �rst step, ea
h integer kirepresents a hub 
onsisting of node i and ki outgoing �half-edges�. In the se
ond step these �half-edges�are paired randomly to form undire
ted links whi
h now 
onne
t nodes (see �gure 2.3). The number oflinks �u
tuates around N〈k〉/2 if no additional 
onstraint is imposed. In general, this pro
edure leads topseudographs sin
e sometimes an edge 
an be 
reated between already 
onne
ted nodes. To restri
t tosimple graphs one has to stop the pro
edure every time when a multiple or self-
onne
ting link is 
reated,and to start it from the beginning. This 
an be very time-
onsuming, espe
ially for degree distributionswith heavy-tails, where it is unlikely to produ
e only a single link between nodes of high degree. Thussometimes for pra
ti
al purposes one does not dis
ard the whole network but only the last move, and2We 
onsider only the 
ase of K > 2 when the network is 
onne
ted.10



pFigure 2.2: Example of the 
onstru
tion of Watts-Strogatz small-world network. Starting from N = 10nodes, ea
h with degree 4, one rewires some edges with probability p. As p in
reases, the graph be
omesmore random.
Figure 2.3: Example of the Molloy-Reed 
onstru
tion of pseudographs. We start from N = 5 emptynodes with ki �half-edges� (left-hand side) 
onne
ted to node i. The numbers ki are taken independentlyfrom some distribution Π(k). On the right-hand side we show two possible 
on�gurations obtained bypairing half-edges.
hooses another pair of half-edges. This introdu
es 
orrelations to the network and an un
ontrolled biasto the sampling. In other words, graphs are not sampled uniformly [31℄.Using this model Molloy and Reed have shown that for networks with un
orrelated degrees the giant
omponent emerges when the following 
ondition is ful�lled:

∑

k

k(k − 2)Π(k) > 0. (2.7)For Π(k) being Poissonian one gets the well-known result for ER graphs: k̄c = 1. The most importantproperty of the model is that it allows for power-law degree distribution. Indeed, up to �nite-size e�e
ts,the distribution Π(k) is reprodu
ed 
orre
tly. The average path length l̄ has also been 
al
ulated [3℄; itgrows as lnN with the system size, so again one has a small-world behavior. The 
lustering 
oe�
ient isproportional to k̄/N so it vanishes as for random graphs, but the proportionality 
oe�
ient depends on
Π(k) and may be quite large for heavy-tailed distributions.Finally, we shall mention the Maslov-Sneppen algorithm [32℄ used for obtaining a randomizedversion of any network. The original motivation was to examine whether the appearan
e of degree-degree 
orrelations and other non-trivial properties observed in some biologi
al networks 
ould be entirelyattributed to the power-law degree distribution. The basi
 step in this algorithm involves rewiring oftwo edges. One sele
ts two edges: i → j and k → l, and then one rewires their endpoints to get i → land k → j. If this move leads to multiple- or self-
onne
tions, one reje
ts it and tries with another pairof edges. To obtain a randomized (�thermalized�) version of the given network, one repeats this movemany times. The algorithm preserves degrees of all nodes, so at the end of randomization the degreedistribution is the same as for the original network. However, thermalization breaks any 
orrelationsbetween nodes whi
h might be present at the beginning. In a sense, one obtains a new network beingmaximally random for the given sequen
e of degrees {k1, . . . , kN}. In next se
tions we will see that thisalgorithm is also very helpful for generating graphs in a mi
ro-
anoni
al ensemble.The four models presented above 
learly belong to the 
lass of equilibrated networks be
ause everynode on the network has statisti
ally the same properties. Nodes have no individual attributes whi
hwould be 
orrelated with nodes' labels, as one 
an see if one repeats the pro
ess of generation of networksmany times. In the next subse
tion we shall explain in a more detailed way what it means and how to11



de�ne an ensemble of equilibrated graphs. We shall see that graphs from the ensemble 
an be generatedin a pro
ess of thermalization whi
h homogenizes the network.2.1.2 Canoni
al ensemble for ER random graphsThe basi
 
on
ept in the statisti
al formulation is that of statisti
al ensemble. The statisti
al ensemble ofnetworks is de�ned by as
ribing a statisti
al weight to every graph in the given set. Physi
al quantitiesare measured as weighted averages over all graphs in the ensemble. The probability of o

urren
e ofa graph during random sampling is proportional to its statisti
al weight, thus the 
hoi
e of statisti
alweights a�e
ts the probability of o

urren
e and, in e�e
t, also �typi
al� properties of random graphs inthis ensemble. For 
onvenien
e, the statisti
al weight 
an be split into two 
omponents: a fundamentalweight and a fun
tional weight. If the fun
tional weight is independent of the graph, graphs are maximallyrandom. The fundamental weight tells one how to probe the set of �pure� graphs uniformly, so that ea
hgraph in the ensemble is equiprobable. In other words, the fundamental weight de�nes an uniform measureon the given set of graphs and should be �xed. The fun
tional weight is the parameter of the model.What is the most natural 
andidate for the fundamental weight for graphs? Consider simple graphswith a �xed number of nodes. We 
an 
hoose the uniform measure by saying that in this 
ase all unlabeledgraphs are equiprobable, or alternatively that all labeled graphs are equiprobable. These two de�nitionsgive two di�erent probability measures sin
e the number of ways in whi
h one 
an label graph's nodesdepends on graph's topology. It turns out that the latter de�nition is in many respe
ts better and we willsti
k to it. For instan
e, with this de�nition ER graphs have a uniform measure and thus are maximallyrandom. There are also some pra
ti
al reasons. First, in the real world as well as in 
omputer simulationsnode are labeled3. Se
ond, it is not easy to determine whether two unlabeled graphs are identi
al or not.The problem of graph isomorphism has 
ertainly NP-
omplexity but it is unknown if it is NP-
omplete[33℄.For pseudographs, the fundamental weight is most naturally de�ned by saying that fully labeledgraphs, that is having nodes and edges' endpoints labeled, are equiprobable in the maximally random
ase. One 
an show that for this 
hoi
e ea
h unlabeled graph has the weight equal to the symmetryfa
tor of Feynman diagrams generated in the Gaussian perturbation �eld theory [20, 34℄.Let us 
on
entrate on simple graphs. Consider again an ensemble of Erdös-Rényi's graphs with Nlabeled nodes and an arbitrary number L of (unlabeled) links. Sin
e ea
h ER graph from this ensemble
an be in a one-to-one way represented as a symmetri
 N ×N adja
en
y matrix we see that the uniformmeasure in this ensemble is alternatively de�ned by saying that all su
h matri
es are equiprobable. Whatabout unlabeled graphs? Are they equiprobable in this ensemble? An unlabeled graph is obtained froma labeled one by removing labels. We immediately see that ea
h unlabeled graph 
an be obtained frommany di�erent labeled graphs. Let us 
onsider the unlabeled one shown on the left-hand side in theupper part of Fig. 2.4. Sin
e there are three nodes one 
an naively think that there are 3! labeled graphs
orresponding to this shape as shown on the left-hand side of the �gure. A
tually, it turns out that thereare only three distin
t ones in the sense of having distin
t adja
en
y matrix. Graphs A, C, E are distin
t,but B is identi
al to A, D to C, and F to E:
AA = AB =





0 1 1
1 0 0
1 0 0



 , AC = AD =





0 1 0
1 0 1
0 1 0



 , AE = AF =





0 0 1
0 0 1
1 1 0



 . (2.8)In other words there are three labeled graphs having this shape. On the other hand, if one takes the shapein the lower line of Fig. 2.4 one 
an see that there is only one labeled graph 
orresponding to it, sin
eall others have the same adja
en
y matrix. In view of this we see that the probability of o

urren
e ofthe upper shape is three times larger than of the lower one sin
e the upper is realized by three adja
en
ymatri
es while the lower has only one realization.Let us 
onsider now an ensemble of Erdös-Rényi graphs with N = 4, L = 3. The set 
onsists of onlythree distin
t unlabeled graphs A, B, C shown in Fig. 2.5. Ea
h graph has a few possible realizationsas a labeled graph. One 
an label four verti
es of A in 4! = 24 ways 
orresponding to permutationsof nodes 1 − 2 − 3 − 4, but only nA = 12 of them give distin
t labeled graphs. It is so be
ause everypermutation has its symmetri
 
ounterpart whi
h gives exa
tly the same labeled graph, e.g. 1− 2− 3− 4and 4 − 3 − 2 − 1. Similarly, one 
an �nd that there are nB = 4 labeled graphs for B and nC = 4 for C.One 
an 
he
k that indeed by dropping three links at random on four nodes one gets these numbers oflabeled ER shapes. Altogether, there are nA + nB + nC = 20 labeled graphs in the given set. Be
ause3In real-world networks one 
an always distinguish nodes for example by names of Web pages, people, s
ienti�
 paperset
. On a 
omputer, nodes are obviously labeled by their representation in 
omputer memory.12
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y matrix and hen
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al.Bottom: a triangle-shaped graph has only one realization as a labeled graph.
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B CAFigure 2.5: Three possible graphs for N = 4, L = 3, for ea
h of them one of possible labellings is shown.The total number of di�erent labellings of these graphs is: nA = 12, nB = 4, nC = 4.all labeled graphs are assumed to be equiprobable, the shapes A, B, C have the following probabilities ofo

urren
e during the random sampling:
pA =

nA
n

=
3

5
, pB =

nB
n

=
1

5
, pC =

nC
n

=
1

5
. (2.9)We see that (unlabeled) ER graphs are not equiprobable - the distribution is uniform only for labeledgraphs. Let us denote the statisti
al weights for A, B, C by wA, wB , wC . They are proportional toprobabilities of 
on�gurations and hen
e wA : wB : wC = pA : pB : pC . There is a 
ommon proportionality
onstant in the weights, whi
h we for 
onvenien
e 
hoose so that the weight of ea
h labeled graph is 1/N !.For this 
hoi
e we have wA = 1/2, wB = 1/6, wC = 1/6. The larger is the symmetry of a graphtopology, the smaller is the number of underlying labeled graphs and thus the smaller is the statisti
alweight. The 
hoi
e 1/N ! 
ompensates the trivial fa
tor of permutations of indi
es, and thus removesover
ounting - however, for graphs with �xed number of nodes this parti
ular 
hoi
e does not in�uen
eon any physi
al properties.We now apply the above ideas to de�ne an ensemble of ER graphs with arbitrary N,L. The partitionfun
tion Z(N,L) for the Erdös-Rényi ensemble 
an be written in the form:

Z(N,L) =
∑

α′∈lg(N,L)

1

N !
=

∑

α∈g(N,L)

w(α), (2.10)where lg(N,L) is the set of all labeled graphs with given N,L and g(N,L) is the 
orresponding set of(unlabeled) graphs. The weight w(α) = n(α)/N !, where n(α) is the number of labeled versions of graph
α. We are interested in physi
al quantities averaged over the ensemble. The word �physi
al� means herethat the quantity depends only on graph's topology and not on how nodes' labels are assigned to it. Itis a natural requirement. The average of a quantity O over the ensemble is de�ned as

〈O〉 ≡ 1

Z(N,L)

∑

α′∈lg(N,L)

O(α′)
1

N !
=

1

Z(N,L)

∑

α∈g(N,L)

w(α)O(α). (2.11)We shall refer to the ensemble with �xed N,L as to a 
anoni
al ensemble. The word �
anoni
al� is usedhere to emphasize that the number of links L is 
onserved like the total number of parti
les in a 
ontainer13



with ideal gas remaining in thermal balan
e with a sour
e of heat. Although there is no temperaturehere, the analogy is 
lose be
ause, as we shall see later, these graphs 
an be indeed generated in a sort ofthermalization pro
ess.The partition fun
tion Z(N,L) 
an be 
al
ulated by summing over all adja
en
y matri
es A whi
hare symmetri
, have zeros on the diagonal and L unities above the diagonal [22℄. The result is:
Z(N,L) =

1

N !

(
(

N
2

)

L

)

, (2.12)whi
h agrees with simple 
ombinatori
s: there are ((N

2 )
L

) ways of 
hoosing L links among all possible
(

N
2

) edges. In a similar manner, summing over adja
en
y matri
es, one 
an 
al
ulate averages of variousquantities. As an example let us 
onsider the node degree distribution Π(k):
Π(k) =

〈

1

N

∑

i

δk,ki

〉

, (2.13)where one 
an use an integral representation of the dis
rete delta to get [22℄
Π(k) =

(
(

N−1
2

)

L− k

)(

N − 1

k

)

/

(
(

N
2

)

L

)

. (2.14)This is an exa
t result for ER random graphs. It redu
es in the limit k̄ = 
onst, N → ∞ to the Poissoniandistribution (2.5).2.1.3 Grand-
anoni
al and mi
ro-
anoni
al ensemble of random graphsSo far we have dis
ussed the 
anoni
al ensemble of Erdös-Rényi graphs with N,L �xed. If we allow for�u
tuations of the number of edges, we get the binomial model. The probability of obtaining a labeledgraph with given L is P (L) = pL(1 − p)(
N

2 )−L. Thus the partition fun
tion is
Z0(N,µ) =

∑

L

∑

α∈lg(N,L)

1

N !
P (L(α)) = (1 − p)(

N

2 )
∑

L

(

p

1 − p

)L
∑

α∈lg(N,L)

1

N !
. (2.15)The fa
tor (1 − p)(

N

2 ) is inessential for �xed N and 
an be skipped. The new partition fun
tion reads
Z(N,µ) =

∑

L

exp(−µL) Z(N,L), (2.16)where p
1−p ≡ exp(−µ) or equivalently µ = ln 1−p

p . The weight of a labeled graph α is now w(α) =

exp(−µL(α))/N !, where µ is a 
onstant whi
h 
an be interpreted as a 
hemi
al potential for links in thegrand-
anoni
al ensemble (2.16). Noti
e that the fun
tion (2.16) 
an be regarded as the generatingfun
tion for Z(N,L). One 
an 
al
ulate the average number of links or its varian
e as derivatives of thegrand-
anoni
al partition fun
tion with respe
t to µ:
〈L〉 = −∂µ lnZ(N,µ), (2.17)

〈L2〉 − 〈L〉2 = ∂2
µ lnZ(N,µ). (2.18)Like for the 
anoni
al ensemble of ER graphs, the sum of states 
an be done exa
tly:

Z(N,µ) =

(N

2 )
∑

L=0

e−µL
1

N !

(
(

N
2

)

L

)

=
1

N !
(1 + e−µ)(

N

2 ). (2.19)It is easy to see that for �xed 
hemi
al potential µ the average number of links behaves as
〈L〉 = p

N(N − 1)

2
=

1

1 + eµ
N(N − 1)

2
. (2.20)Thus for N → ∞ the graphs be
ome dense; k̄ in
reases to in�nity. We know that this pathology 
an be
ured by an appropriate s
aling of the probability p: p ∼ 1/N . Sin
e µ = ln 1−p

p , this 
orresponds to14



µ ∼ lnN . In this 
ase L is proportional to N . The 
orresponding graphs be
ome sparse and the meannode degree is now �nite. The situation in whi
h µ s
ales as lnN is very di�erent from the situation knownfrom 
lassi
al statisti
al physi
s, where su
h quantities like 
hemi
al potential µ are intensive and do notdepend on system size N in the thermodynami
 limit N → ∞. Moreover, the entropy S = lnZ(N,L) isnot extensive - one 
an show that
S =

k̄ − 2

2
N lnN +

2 + k̄ − k̄ ln k̄

2
N +O(lnN), (2.21)so the system is not �normal� in the thermodynami
al sense for k̄ 6= 2. Only when k̄ = 2, that is if

N = L, the entropy be
omes extensive. This means that ea
h graph from this set 
an be partitionedso that we get two sets of graphs A and B, with NA + NB = N nodes, and the partition fun
tion forA+B being just the produ
t of the partition fun
tions for A and B. In other words, almost every graphin A+B 
an be 
onstru
ted by taking two graphs: one from A and the se
ond one from B, and joiningtwo of their nodes by a link. In 
lassi
al statisti
al physi
s this means that intera
tions between A andB take pla
e only on the boundary whi
h 
an be negle
ted in the thermodynami
al limit. In the 
ontextof ER graphs, the 
ase N = L must therefore 
orresponds to the set of tree-like graphs - the number ofloops must be small and they must be short (lo
al).As mentioned, the di�eren
e between 
anoni
al and grand-
anoni
al ensembles gradually disappearsin the large N limit. It is easy to see why. In a 
anoni
al ensemble of sparse graphs the average degree
k̄ = 2L/N is kept 
onstant when N → ∞ while in a grand-
anoni
al it �u
tuates around 〈k〉 = 2〈L〉/N =
k̄, if µ is properly 
hosen. However, the magnitude of �u
tuations around the average disappears in thelarge N limit sin
e

〈L2〉 − 〈L〉2 =

(

N

2

)

e−µ

(1 + e−µ)2
, (2.22)and for µ ∼ lnN the relative width √〈L2〉 − 〈L〉2/〈L〉 ∼ N−1/2 → 0, so e�e
tively the system sele
tsgraphs with 〈k〉 = k̄.Apart from the 
anoni
al and grand-
anoni
al ensembles, one 
an de�ne a mi
ro-
anoni
al en-semble of ER random graphs. By analogy with 
lassi
al physi
s, we de�ne it as a set of all equiprob-able graphs with pres
ribed sequen
e of degrees {k1, . . . , kN} whi
h plays the role of the mi
rostate.Then the 
anoni
al ensemble is 
onstru
ted by summing over all sequen
es obeying the 
onservation law

k1 + · · · + kN = 2L. It looks similar to the 
onstru
tion of Molloy and Reed, and indeed, it is its spe
ial
ase. We shall make use of the mi
ro-
anoni
al ensemble in Chapter 3 in the 
ontext of dynami
s ongraphs.2.1.4 Weighted equilibrated graphsIn the previous se
tion we des
ribed ensembles for whi
h all labeled graphs had the same statisti
alweight. They were just ER or binomial random graphs and thus had well known properties. In se
tion2.1.1 we pointed out however, that most of these properties do not 
orrespond to those observed for realworld networks. But the framework of statisti
al ensembles is very general and �exible and it allows oneto model a wide 
lass of random graphs and 
omplex networks with non-trivial properties. Consider thesame set of graphs as in the Erdös-Rényi model but now to ea
h graph in this set, in addition to itsfundamental weight 1/N !, we as
ribe a fun
tional weight W (α) whi
h may di�er from graph to graphso that graphs are no longer uniformly distributed. By tuning the fun
tional weight one 
an make thattypi
al graphs in the ensemble will be s
ale-free or have more loops, et
. One has a freedom in 
hoosingthe fun
tional weight. The only restri
tion on W (α) is that it should not depend on the labeling be
ausegraphs need to remain equilibrated. We stress that we still have the same set of graphs but now theymay have distin
t statisti
al weights.The partition fun
tion for a weighted 
anoni
al ensemble 
an be written as
Z(N,L) =

∑

α′∈lg(N,L)

(1/N !)W (α′) =
∑

α∈g(N,L)

w(α)W (α), (2.23)where as before w(α) = n(α)/N ! 
ounts labeled graphs. For W (α) = 1 we re
over the ensemble of ERgraphs. The simplest non-trivial 
hoi
e of W (α) is a family of produ
t weights:
W (α) =

N
∏

i=1

p(ki), (2.24)15



where p(k) is a semi-positive fun
tion depending on degree ki of node i. This fun
tional weight is lo
alin the sense that it depends only on individual degrees whi
h are a lo
al property of the graph. Itdoes not introdu
e expli
itly 
orrelations between nodes, so we will 
all random graphs generated inthis ensemble un
orrelated networks. One should, however, remember that the total weight does notentirely fa
torize be
ause the fundamental weight w(α) = n(α)/N ! written as a fun
tion of node degrees
w(k1, k2, . . . , kN ) does not fa
torize sin
e the number n(α) of labelings is not a produ
t of any lo
alproperty of the graph but is a global feature. There is also another fa
tor whi
h prevents the model froma full fa
torization and independen
e of node degrees, namely the 
onstraint on the total number of links
2L = k1 + k2 + · · · + kN whi
h for given L and N introdu
es 
orrelations between ki's. For example,if one of ki's is large, say ≈ 2L, then the remaining ones have to be small in order not to violate the
onstraint on the sum. The e�e
t gradually disappears in the limit L → ∞ for a wide 
lass of weights
p(k) sin
e then the 
anoni
al ensemble and the grand-
anoni
al ensemble, for whi
h L does not need tobe �xed, be
ome equivalent [18℄.The weight (2.24) is espe
ially well-suited for studying ensembles with various degree distributions andno higher-order 
orrelations. To see how p(k) is related to Π(k), let us �rst dis
uss the analogous ensembleof weighted pseudographs. They 
an model networks where self-intera
tions of nodes are important, as forexample e
ologi
al networks whi
h des
ribe predator-prey relations where 
annibalism is often present.A pseudograph 
an be represented by a symmetri
 adja
en
y matrix A whose o� diagonal entries Aij
ount the number of links between nodes i and j, and the diagonal ones Aii 
ount twi
e the numberof self-
onne
ting links atta
hed to node i. Ea
h adja
en
y matrix represents a 
ertain labeled graph,but now, due to possibility of multiple links, we label also edges and 
all su
h a graph a fully labeledgraph. To ea
h fully labeled graph we as
ribe a 
on�gurational weight 1/N !(2L)!. The weight of ea
hlabeled graph (where only nodes are labeled) having adja
en
y matrix A is then

1

N !

(

∏

i

1

2Aii/2 (Aii/2)!

)

∏

i>j

1

Aij !
=

1

N !

∏

i

1

Aii!!

∏

i>j

1

Aij !
, (2.25)where the origin of all symmetry fa
tors is the same as in 
ase of Feynman diagrams and stems frompossible ways of labeling links (see e.g. [22℄). The key points behind introdu
ing pseudographs are: i)the set 
ontains the subset of all simple graphs whi
h we are interested in, and, ii) despite a 
ompli
atedform of Eq. (2.25), the 
anoni
al partition fun
tion 
an be easily evaluated. Let us rewrite the formula(2.23) for Z(N,L) for pseudographs with fun
tional weight (2.24):

1

N !

∑

~q

δP

i
qi−2L

∏

i

p(qi)
∑

Aii=

0,2,4,...

i=1..N

∑

Aij=

0,1,2,...

i>j

∏

i

δP

k<i
Aik+Aii+

P

k>i
Aki−qi

Aii!!

∏

i>j

1

Aij !
. (2.26)

Using the standard integral representation of the delta fun
tion we 
an rewrite all sums over Aij as
∮

∏

i

dzi
2πi

∑

Aii=0,2,4,...

z−1−qi+Aii

i

Aii!!

∑

Aij=0,1,2,...,i>j

∏

i

z
P

k<i Aik+
P

k>i Aki

i

∏

i>j

1

Aij !
. (2.27)The sum over diagonal elements gives a produ
t of fa
tors ez2i /2. The sum over Aij is also easy to
al
ulate and reads ∏i>j e

zizj . Putting the two results together we �nd the following fa
tor: eP

i,j zizj/2.Therefore, the partition fun
tion is
Z(N,L) =

1

N !

∑

~q

δP

i
qi−2L

∮

∏

i

dzi
2πi

p(qi)z
−1−qi

i e
1
2 (

P

i
zi)

2

. (2.28)The last, quadrati
 term 
an be expanded by means of the Hubbard-Stratonovi
h identity:
exp

(

A2

2

)

=
1√
2π

∫

dx exp

(

−x
2

2
−Ax

)

. (2.29)The dis
rete delta giving 
onservation of links 
an be written as a 
ontour integral, so we get
Z(N,L) =

1

N !

∮

dy

2πi
y−1−2L

∫

dx√
2π
e−x

2/2

[

∮

dz

2πi

∑

q

p(q)
(y

z

)q exz

z

]N

. (2.30)16



The integral over dz yields (xy)q/q!. Changing variables: y → v = xy and 
hanging the order ofintegration over dx and dv we immediately obtain
Z(N,L) =

1

N !

∫

dx√
2π
e−x

2/2x2L

∮

dv

2πi

[

∑

q

p(q)
vq

q!

]N

v−1−2L =
(2L− 1)!!

N !

∮

dv

2πi
v−1−2LFN(v),(2.31)where we have de�ned the following generating fun
tion for weights p(q):

F (v) =
∑

q

p(q)
vq

q!
. (2.32)Up to now, these results are stri
t. However, the integral over dv is often hard to 
al
ulate for �nite

N,L. Fortunately, the partition fun
tion (2.31) 
an be 
al
ulated in the thermodynami
al limit. Thesaddle-point integration yields:
lnZ(N,L) ≈ N lnF (v0) − (2L+ 1) ln v0 + ln

(2L− 1)!!

N !
+ . . . , (2.33)with v0 being a solution to the equation:

v0
F ′(v0)

F (v0)
= k̄. (2.34)We are now ready to 
al
ulate Π(k). Sin
e all nodes are equivalent in the equilibrated network withprodu
t weights (2.24), the degree distribution 
an be obtained by a simple di�erentiation of the partitionfun
tion:

Π(k) =
p(k)

NZ(N,L)

∂Z(N,L)

∂p(k)
= p(k)

1

N

∂ lnZ(N,L)

∂p(k)
, (2.35)and by applying Eq. (2.33) we �nally arrive at

Π(k) =
p(k)vk0
k!F (v0)

. (2.36)This result has been derived in the thermodynami
al limit for the 
anoni
al ensemble of pseudographs.If we try to do the same for simple graphs, the 
al
ulation of the partition fun
tion is more 
ompli
ated,be
ause if we ex
lude multiple and self-
onne
tions, the weight of ea
h labeled graph is identi
al, and theentries Aij of the adja
en
y matrix assume now only two possible values 0 and 1. This leads to a 
hangeof the fa
tor e 1
2 (

P

i
zi)

2 in Eq. (2.28) to
∏

i>j

(1 + zizj) = e
1
2

P

i6=j
ln(1+zizj). (2.37)The integrals over dzi 
annot be done in a straightforward way. One 
an, however, use the followingexpansion:

∑

i6=j

ln(1 + zizj) =

∞
∑

n=1

(−1)n

n

∑

i

z2n
i −

∞
∑

n=1

(−1)n

n

(

∑

i

zni

)2

, (2.38)and, in order to get the fa
torization of zi's, to apply the H-S identity (2.29) to ea
h quadrati
 term inthe se
ond sum over n. This leads to the following, rather formal, integral:
Z(N,L) =

1

N !

∮

dy

2πi
y−1−2L

∫

dx1 · · ·
∫

dx∞

(

∞
∏

n=1

√

−n(−1)n

2π
e

n(−1)n

2 x2
n

)

×
∮

dz1
2πi

· · ·
∮

dzN
2πi

∑

q1,...,qN

(

∏

i

p(qi)y
qiz−1−qi

i

∞
∏

n=1

e
(−1)n

2n
z2n

i +xnz
n
i

)

. (2.39)If we look at Eq. (2.38) as a perturbative expansion, the integral over dxn gives a �produ
t� 
orre
tion of
nth order to Z(N,L). Taking only �rst few terms in n we get an approximation of Z(N,L), but be
ause17



we know that Z(N,L) is �nite, it is not ne
essary to take all of them. If we restri
t ourselves only to the�rst order n = 1 we get
1

N !

∮

dy

2πi
y−1−2L 1√

2π

∫

dx1e
−x2

1/2

[

∑

q

p(q)

∮

dz

2πi

(y

z

)q e−z
2/2+x1z

z

]N

. (2.40)This is indeed a partition fun
tion for pseudographs but with single self-
onne
tions ex
luded. Multiple
onne
tions and double, triple, et
. self-
onne
tions are still present. Changing variables y → v = x1yand evaluating the integral over dz we have
1

N !

1√
2π

∫

dx1e
−x2

1/2x2L
1

∮

dv

2πi
v−1−2L

[

∑

q

p(q)vq
∞
∑

m=0

(

− 1

2x2
1

)m
1

m!(q − 2m)!

]N

, (2.41)and be
ause the integral over dx1 is dominated by the region x1 ∼
√
L ∝

√
N , only the �rst term in thesum over m 
ontributes in the limit of N → ∞. We end up with a partition fun
tion like in Eq. (2.31) forpseudographs. As a by-produ
t we 
an also estimate the 
hara
teristi
 value of z ≈ (q + 1)/x1 ∼ 1/

√
Nin the integral over dz in Eq. (2.40). Let us 
onsider now the produ
t of integrals in Eq. (2.39) andtry to estimate the 
hara
teristi
 values of x1, . . . , x∞ and z1, . . . , zN in order to 
onvin
e ourselves thatintegrals over dx2, dx3, . . . 
an be negle
ted in the thermodynami
al limit. Assuming that in the limit

N → ∞ the integral is dominated by a single saddle point, we must �nd the maximum of the fun
tion:
∞
∑

n=1

(

n(−1)n

2
x2
n +

∑

i

(−1)n

2n
z2n
i + xnz

n
i

)

−
∑

i

(1 + qi) ln zi. (2.42)The di�erentiation with respe
t to zi and xn gives the following set of equations:
∀n = 1, . . . ,∞ : (−1)nnxn +

∑

i

zni = 0, (2.43)
∀i = 1, . . . , N :

∑

n

(−1)nz2n
i + nxnz

n
i = qi + 1. (2.44)The integrals over dzi as well as the sums over qi fa
torize, thus we 
an skip indi
es i be
ause 
hara
teristi
values of all zi's and all qi's are equal. This allows for solving these equations. We have

|z| ∼ 1√
N
, (2.45)

|xn| ∼ N1−n/2

n
, (2.46)so x1 ∼

√
N but xn's for higher n tend to zero in the thermodynami
 limit. This means that theonly signi�
ant 
ontribution to Eq. (2.39) is from the integral over dx1. Therefore, Eq. (2.40) is a goodapproximation. We noti
e that in the limit N → ∞ this equation is identi
al to Eq. (2.30) whi
h wehad before for pseudographs. Thus the degree distribution Π(k) is again given by Eq. (2.36). Let us nowdis
uss some 
onsequen
es of that formula. First, for p(q) = 1 the generating fun
tion F (v) = ev and

Π(k) is Poissonian as it should be for equally weighted ER graphs. Se
ond, to get any desired degreedistribution Π(k) one should take p(q) = q!Π(q) and tune the average degree k̄ so that v0 = 1:
k̄ = k̄c ≡ F ′(1)/F (1). (2.47)In other words, the number of links and nodes must be 
arefully balan
ed to obtain a desired distribution

Π(k): 2L/N = k̄ =
∑

k kΠ(k) in the limit of large graphs. For instan
e, to get a power-law distributionone should take p(q) ∼ q!q−γ and adjust N,L 
arefully. A very important example is the distribution forBarabási-Albert model [1℄:
Π(k) =

4

k(k + 1)(k + 2)
(2.48)for k > 0 and Π(0) = 0, whi
h will be dis
ussed in next se
tion. In order to obtain the ensemblewith Π(k) given by the above formula, one has to 
hoose p(k) = k! 4

k(k+1)(k+2) for k = 1, 2, . . . , and
p(0) = 0. The mean of the distribution (2.48) is k̄c = 2 so we have to take N = L to adjust k̄ to thisvalue. If L is too small, the degree distribution falls o� exponentially for large degrees as one 
an see18



from Eq. (2.36), be
ause then the saddle point v0 < 1. When one ex
eeds the 
riti
al degree k̄c, thesaddle-point approximation is no longer valid4 and the behavior depends on whether we 
onsider simple-or pseudographs. For simple graphs, the degree distribution has no longer a power-law tail, but has amore 
ompli
ated form. We must remember that for simple graphs Eq. (2.36) is only an approximation.A very interesting behavior is observed for pseudographs. It has been shown [35℄ that a surplus of links
ondenses on a single node, thus Π(k) has the same power-law distribution as for the 
riti
al degree k̄c,but with an additional delta peak whose position moves linearly with the system size N . This is the samephenomenon as in the �Ba
kgammon 
ondensation� taking pla
e in the balls-in-boxes model [36℄. Weshall devote one se
tion of Chapter 3 to this problem, so now we will only mention that this is related tothe divergen
e of the series (2.32) when 2L/N ex
eeds the threshold k̄c. In fa
t, we shall see in Chapter3 that the partition fun
tion for the balls-in-boxes model is given by the same formula as Eq. (2.31) forpseudographs and therefore the model 
an be mapped onto the balls-in-boxes model.There is also another problem whi
h should be mentioned here. Equation (2.36) is valid only forin�nite sparse graphs, that is for N → ∞ and k̄ �xed. For �nite N , the node degree distribution Π(k)deviates from the limiting shape due to �nite-size 
orre
tions, whi
h are parti
ularly strong for fat-taileddistributions Π(k) ∼ k−γ . As a result of stru
tural 
onstraints, the maximal node degree 
annot be ∼ Nbut often it s
ales as some power of N smaller than one. Corre
tions to the s
ale-free degree distributionfor �nite networks will be extensively dis
ussed in se
tion 3.1.Let us mention also a parti
ularly important subset of weighted graphs, namely weighted trees [37℄.Be
ause of their spe
ial stru
ture (no 
y
les), many results 
an be obtained analyti
ally. For instan
e,for trees with produ
t weights, similarly as for pseudographs one 
an 
al
ulate the expression for Π(k):
Π(k) =

p(k)vk−1
0

(k − 1)!F (v0)
, (2.49)where the generating fun
tion F (v) is now given by

F (v) =
∞
∑

q=1

p(q)
vq−1

(q − 1)!
. (2.50)Therefore to get a power-law degree distribution one has to take p(k) ∼ (k − 1)!k−γ . Similarly, one 
an
al
ulate 
orrelations [38℄:

ǫ(k, q) =
Π(k)Π(q)(k + q − 2)

2
, (2.51)and hen
e the assortativity 
oe�
ient from Eq. (1.6), whi
h for trees with BA degree distribution reads

A =
2(69 − 7π2)

21 − 2π2
≈ −0.1384, (2.52)showing that this network is disassortative. Trees will be more throughly dis
ussed in se
tion 2.3 in the
ontext of 
omparing the properties of equilibrated and 
ausal networks.At the end we shall mention that one 
an de�ne more 
ompli
ated weights than those given byEq. (2.24). A natural 
andidate for a weight to generate degree-degree 
orrelations on the network is thefollowing 
hoi
e [39, 40℄:

W (α) =

L
∏

l=1

p(kal
, kbl

), (2.53)where the produ
t runs over all edges of graph, and the weight p(ka, kb) is a symmetri
 fun
tion of degreesof nodes a, b at the endpoints of link. One 
an 
hoose this fun
tion to favor assortative or disassortativebehavior [39, 40, 41, 42, 43℄. Similarly, one 
an tune the weights to mimi
 some other fun
tional propertiesof real networks, like for example higher 
lustering [44, 45, 46, 47, 48℄.2.1.5 Monte Carlo generator of equilibrated networksOnly for a few models of random graphs, 
losely related to ER graphs, one 
an 
al
ulate almost allquantities of interest analyti
ally. This is not the general 
ase for weighted networks like those presentedin the previous se
tion. In some 
ases it is useful to support the dis
ussion with 
omputer simulations.Various methods have been proposed for generating random graphs, but usually ea
h of them works only4See the dis
ussion of the 
ondensation in balls-in-boxes model in Se
. 3.2.2.19



for one parti
ular model or its variations. In this se
tion we will des
ribe a very general Monte Carlomethod whi
h allows one to study a wide 
lass of random weighted graphs. The idea standing behindthis method is to sample the 
on�guration spa
e with probabilities given by their statisti
al weights.Unfortunately, there is no general and e�
ient pro
edure that pi
ks up an element from a large set withthe given probability. The most naive algorithm in whi
h one pi
ks up an element uniformly and thena

epts it with the probability proportional to its statisti
al weight has a very low a

eptan
e rate whenthe size of the set is large. Be
ause the number of graphs grows exponentially or faster5, one 
learly seesthat another idea must be applied. In this se
tion we will dis
uss su
h an idea whi
h is derived from ageneral framework of dynami
al Monte Carlo te
hniques.The idea is to use a random walk pro
ess, whi
h explores the set of graphs, visiting di�erent 
on�gu-rations with probability proportional to their statisti
al weights. Su
h a pro
ess is realized as a Markov
hain (pro
ess) whi
h has a unique stationary state with the probability distribution proportional to
W (α). The Markov 
hain is de�ned by spe
ifying transition probabilities P (α → β) to go in one ele-mentary step from a 
on�guration α to β. The elementary step is a kind of transformation whi
h 
arriesover the 
urrent graph into another one. A 
onvenient way to store these probabilities is to introdu
ea matrix P, 
alled a Markovian matrix, with entries Pαβ ≡ P (α → β). For a stationary pro
ess, thetransition matrix P is 
onstant during the random walk. The pro
ess is initiated from a 
ertain graph
α0 and then elementary steps are repeated produ
ing a sequen
e (
hain) of graphs α0 → α1 → α2 → . . . .The probability pβ(t+ 1) that a graph β is generated in the (t+ 1)th step is given by:

pβ(t+ 1) =
∑

α

pα(t)Pαβ , (2.54)whi
h 
an be rewritten as a matrix equation:
p(t+ 1) = Pτp(t), (2.55)where Pτ denotes the transpose of P and p is a ve
tor of elements pα. From general theory of Markovianmatri
es [49℄ we know that the stationary state, 
hara
terized by the equation: p(t + 1) = p(t), 
orre-sponds to the left eigenve
tor of P to the eigenvalue λ = 1. If the pro
ess is ergodi
, whi
h means thatany 
on�guration 
an be rea
hed by a sequen
e of elementary steps starting from any initial graph, andif the transition matrix ful�lls detailed balan
e 
ondition:

∀α, β : W (α)Pαβ = W (β)Pβα, (2.56)then the stationary state approa
hes the desired distribution: pα(t) → W (α)/Z for t → ∞. In otherwords, in the limit of in�nite Markov 
hain, the probability of o

urren
e of graphs be
omes proportionalto their statisti
al weights and is independent of the initial graph. However, one must be 
areful whilegenerating relatively short 
hains. First of all, the probabilities 
an strongly depend on the initial state,and one has to wait some time before one starts measurements, to �thermalize� the system, i.e. to rea
h�typi
al� graphs in the ensemble. Se
ond of all, 
onse
utive graphs in the Markov 
hain may be 
orrelated,espe
ially when the elementary step is only a lo
al update. Therefore one has to �nd a minimal numberof steps for whi
h one 
an treat measurements on su
h graphs as independent.Among many possible 
hoi
es for probabilities Pαβ , whi
h lead to the same stationary distribution,we shall use here the well-known Metropolis algorithm [50℄, based on the following transition probability:
Pαβ = min

{

1,
W (β)

W (α)

}

. (2.57)The algorithm works as follows. For the 
urrent 
on�guration α one proposes to 
hange it to a new
on�guration β whi
h di�ers slightly from α and then one a

epts it with the Metropolis probability(2.57). Repeating this many times one produ
es a 
hain of 
on�gurations. The proposed elementarymodi�
ations (steps) should not be too large be
ause then one risks that the a

eptan
e rate would besmall. Therefore, all algorithms whi
h we propose below attempt in a single step to introdu
e only asmall 
hange to the 
urrent graph, by rewiring only one or two links.Let us try to apply these ideas to write a Monte Carlo algorithm for generating weighted graphs fromthe 
anoni
al ensemble. A good 
andidate for elementary transformation of a graph is rewiring of a link
alled �T-move� (see Fig. 2.6), be
ause it does not 
hange N and L, �xed in the 
anoni
al ensemble.We 
hoose a link ij and a vertex n at random, and rewire one of the endpoints of the link, say j, to n,forming a new link in whi
h repla
es the old one ij. Sometimes it is easier to think about a rewiring ofan oriented link i → j to i → n, and simultaneously, j → i to n → i. If the link in is already present,or if n = i we reje
t this move to prevent from forming a multiple- or self-
onne
tion. Then, ea
h move5For instan
e, for ER model it grows faster than exponentially whi
h results in a non-extensive entropy of graphs, seeSe
. 2.1.3; for introdu
tion on 
ounting graphs see also the referen
e [51℄.20
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Figure 2.6: The idea of �T-move�: a random link (solid line) is rewired from vertex j to a random vertex
n (left-hand side). Alternatively (right-hand side) a random, oriented link (dotted line) is rewired fromvertex of its end j to a random vertex n. The opposite link j → i is simultaneously rewired.is a

epted with the Metropolis probability (2.57). In a spe
ial 
ase of the ensemble of Erdös-Rényigraphs this probability is equal to one sin
e every graph has the same weight. So ER graphs 
an bealternatively obtained by simple rewirings of any other graph - we 
all this pro
ess �thermalization�.The thermalization (homogenization) 
an be used to generate any ensemble of equilibrated networks. Infa
t, one 
ould de�ne equilibrated networks as graphs, whi
h 
an be produ
ed in a pro
edure like this, ifweights do not depend on nodes' labels. This pro
ess destroys any 
orrelations whi
h might be presentdue to 
ausal growth of the initial network.One 
an show [22℄ that, indeed, this algorithm produ
es labeled graphs with desired probabilities.We skip here the details. We would like, however, to point out two di�
ulties whi
h 
an be en
ountered.First, it is not 
lear whether the ergodi
ity is not broken in the limit N → ∞ for models where the numberof 
on�gurations grows with N faster than exponentially. Se
ond, for some 
lasses of (unphysi
al) weightfun
tions, a lo
al algorithm may not be ergodi
. Consider for example weight fun
tionsW (α) of the form(2.24), with p(k) being a fun
tion whi
h is stri
tly positive on a support whi
h has a gap in the middle� an interval k ∈ (k1, k2), where p(k) = 0. In other words, there are no 
on�gurations in this ensemblewhi
h have a node with degree k ∈ (k1, k2). A single rewiring 
an 
hange degrees only by ±1, so it is notpossible to 
hange the value of k from k < k1 to k > k2 sin
e it would have to go through the forbiddenregion (k1, k2). In this 
ase, in order to avoid the di�
ulty one would have to invent an algorithm whi
his able to signi�
antly 
hange k in a single move, to jump from one to another part of the support of theweight fun
tion p(k). We shall not, however, 
onsider su
h unphysi
al weights p(k). For weights, whi
hare physi
ally important, the support of the weight fun
tion is 
onne
ted. In this 
ase the a

eptan
eprobability reads

Pa(α→ β) = min

{

1,
W (β)

W (α)

}

= min

{

1,
p(kj − 1)p(kn + 1)

p(kj)p(kn)

}

= min

{

1,
w(kn)

w(kj − 1)

}

, (2.58)where we have introdu
ed an auxiliary fun
tion:
w(k) =

p(k + 1)

p(k)
. (2.59)The degrees kj , kn are taken from the 
urrent graph α. In the 
omputer algorithm we prefer to use theweight fun
tion w(k) instead of p(k) to redu
e 
omputational 
ost and round-o� errors. In fa
t, w(k) 
anbe exa
tly 
al
ulated for many important p(k)'s, whi
h we are interested in. For example, to get the BAdegree distribution in simple graphs, a

ording to Eq. (2.48), we have to 
hoose p(k) = k!ΠBA(k) andhen
e

w(k) =
k(k + 1)

k + 3
, (2.60)while for trees, be
ause of the fa
tor (k − 1)! in Eq. (2.49),

w(k) =
k2

k + 3
. (2.61)The rewiring pro
edure des
ribed above does not 
hange N and L. If we want to simulate weightedgraphs from the grand-
anoni
al ensemble, we have to 
hoose another transformations whi
h 
hangethe number of links L. Natural 
andidates for su
h transformations are two re
ipro
al transformations:adding and deleting a link. In order to add a link we have to 
hoose two verti
es to whi
h the additionis attempted. To remove a link we pi
k up one link out of all L existing in the graph. These twotransformations must be 
arefully balan
ed in order to get graphs with 
orre
t probabilities. If the21
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Figure 2.7: The idea of �X-move�: two oriented links (dotted lines) ij and ln 
hosen in a random way arerewired, ex
hanging their endpoints. Then the opposite links (solid lines) are also rewired.frequen
y of the two transformations is the same, then the a

eptan
e probabilities for ea
h of them aregiven by [22℄
Padd(α→ β) = min

{

1, exp(−µ)
N2

2(Lα + 1)

W (β)

W (α)

}

, (2.62)and
Pdel(β → α) = min

{

1, exp(+µ)
2Lβ
N2

W (α)

W (β)

}

, (2.63)respe
tively. Here µ is the 
hemi
al potential for links, de�ned in Eq. (2.16) and 
hosen to obtain adesired average number of links6 〈L〉. As before, if we want to produ
e only simple graphs we musteliminate moves leading to self- or multiple 
onne
tions. One 
ould modify the algorithm in many ways.For example, one 
ould, instead of pi
king up a link as a 
andidate for removing, pi
k up two nodesat random and if there is a link between them, remove it. Then the fra
tions N2/2(L + 1) and 2L/N2would disappear from equations (2.62) and (2.63). This would not 
hange the probabilities of graph'so

urren
e, but it would a�e
t the a

eptan
e rate. For sparse networks su
h a modi�ed algorithm isworse than the previous one be
ause the 
han
e that there is a link between two randomly 
hosen nodesis very small and for most of the time the algorithm would do nothing ex
ept looking for links that 
anbe removed. On the other hand, the a

eptan
e rate for the original algorithm is �nite for N → ∞ sin
ethen µ behaves as lnN and the fa
tor eµ2L/N2 is of order 1.Let us 
onsider now a version of this algorithm suitable for the produ
t weights (2.24). The probabilityof a

eptan
e of a new 
on�guration by adding or removing a link between ij reads:
min

{

1,
N2

2(L+ 1)
e−µw(ki)w(kj)

} for addition a link,
min

{

1,
2L

N2
eµ

1

w(ki − 1)w(kj − 1)

} for deleting a link,where L and ki, kj refer to the 
urrent 
on�guration and w(k) is given by Eq. (2.59).Finally, let us say some words about the generation of graphs from the mi
ro-
anoni
al ensemble.Inspired by the Maslov-Sneppen algorithm preserving node degrees, as a lo
al update we 
hoose simulta-neous rewirings shown in Fig. 2.7. We shall 
all this 
ombination �X-move�. At ea
h step of this algorithmone pi
ks up two random links: ij and ln, and rewires them to in and lj. In 
ase of the Maslov-Sneppenalgorithm [32℄, the fun
tional weight is Wα = 1 and hen
e all rewirings are a

epted. In the general
ase, one 
an use this algorithm to generate graphs whose statisti
al weights depend for instan
e on thenumber of triangles, to get a high 
lustering 
oe�
ient, or to produ
e some higher-order 
orrelationsbetween nodes [52℄. The motivation is similar to that given by Maslov and Sneppen, namely if one triesto determine relations between the abundan
e of stru
tural motifs and the fun
tionality of network, it isvery important to 
onstru
t randomized networks whi
h 
ould serve as a ben
hmark.We des
ribed the algorithms presented here and their implementation in [53℄. Be
ause we often haveto do with sparse graphs, it is not needed to keep the whole adja
en
y matrix in 
omputer memory. Thedata stru
ture that we developed allows us to en
ode and simulate networks of size of order 106.2.2 Causal (growing) 
omplex networksIn the previous se
tion we dis
ussed equilibrated networks, whi
h 
an be 
onstru
ted in a sort of thermal-ization or homogenization pro
ess. Clearly for su
h graphs, if they are labeled, a permutation of nodes'6For 
ompli
ated weights, when analyti
al 
al
ulations of the 
orresponden
e 〈L〉 ↔ µ is impossible, one 
an tune µduring the simulation to obtain desired number of links. 22



labels leads to the same set of graphs. In this se
tion we shall dis
uss another kind of graphs, generatedin a pro
ess of growth. A 
ommon feature of these graphs is that there is a natural labeling of nodeswhi
h 
orresponds to the order in whi
h they were added to the graph. We 
all this labeling �
ausal�,sin
e it is always obvious whi
h node is an an
estor of whi
h. The 
orresponding graphs will be 
alled
ausal networks. The 
ausality introdu
es a restri
tion on the number of ways in whi
h the graph 
anbe labeled. As we shall see, this restri
tion very strongly a�e
ts properties of typi
al networks in theensemble.In this se
tion we shall dis
uss some famous models of growing networks. These models are morepopular than equilibrated networks presented above and, indeed, they were �rst models reprodu
ingmany properties of real network. Although in some models the rules governing the pro
ess of growthmay look somewhat arti�
ial, it is instru
tive to study how methods of statisti
al physi
s 
an be appliedto 
ausal networks. Be
ause of the growing nature of these networks, the rate equation approa
h isparti
ularly well suited to study them. We will see, however, that also the 
on
ept of statisti
al ensemble
an be very helpful in order to understand some features of these networks.2.2.1 Models of growing networksAs a �rst example of growing network we shall dis
uss the Barabási-Albert (BA) model introdu
edin a very seminal paper [15℄. This model triggered enormous a
tivity in the �eld of 
omplex networks.Similar models were proposed in di�erent 
ontexts and dis
ussed several times in the past (for review seee.g. [54℄). The model has two basi
 ingredients: growth and preferential atta
hment. The latter meansthat new nodes added to the system prefer to atta
h to nodes with higher degrees. In e�e
t, high degreesare further in
reased and be
ome even higher7. The model is de�ned as follows. Starting from a 
ompletegraph with n0 nodes, at ea
h step a new node is introdu
ed and joined to m previously existing nodeswith the probability proportional to the degree of the node to whi
h a new link is established. One 
aneasily program this pro
edure on a 
omputer, adding nodes one by one and atta
hing them a

ording tothe preferential atta
hment rule. There is also a slightly di�erent version of the algorithm, a more tri
kyone, whi
h instead of fo
using on the nodes uses links as elementary obje
ts. It is more e�e
tive, so let usshortly des
ribe it. Ea
h link ij is viewed in this algorithm as a 
ouple of dire
ted links i→ j and j → i.In the algorithm one pi
ks up at random a dire
ted link and 
hooses the node whi
h is at the endpointof this link as a node to whi
h a new link is going to be atta
hed. The preferential atta
hment rule is inthis way simply realized, be
ause the number of links pointing onto a node with degree k is equal to k.After t steps of nodes' addition, the network 
onsists of n0 + t nodes and mt+ n0(n0 + 1)/2 edges. For
m = 1, the graph generated by this pro
edure 
onsists of trees planted on the initial graph. If the initialgraph is a tree, so is the whole graph.Later on we shall see that the degree distribution falls asymptoti
ally as k−3. In the limit N → ∞the distribution reads [55℄

Π(k) =
2m(m+ 1)

k(k + 1)(k + 2)
Θ(k −m), (2.64)where Θ(x) is the step fun
tion: Θ(x) = 1 for x ≥ 0, Θ(x) = 0 for x < 0. By 
onstru
tion, nodes of degreesmaller than m are absent. The degree distribution (2.64) is in a

ordan
e with distributions observedfor some real networks like the 
itation network. The exponent γ = 3 
annot be tuned in this version ofthe model. As we shall see below, a slight modi�
ation of the atta
hment rule will do the job. The nextimportant property of the BA network is that the diameter grows as ∼ lnN , so it is a small-world. The
lustering 
oe�
ient is rather small. For m = 1, C = 0 be
ause the graph is essentially a tree. For m > 1many triangles appear8, but their number is small in 
omparison to the number of 
onne
ted triples inthe limit N → ∞. There are obvious 
orrelations on BA networks between the age and the degree ofnodes: the older node is, the higher degree it has. This is an e�e
t of a pure growth in absen
e of anyrewiring of links. In fa
t, this age-degree 
orrelation is not observed in the WWW, for whi
h the modelwas originally designed, be
ause there are new web pages having sometimes more links than older ones.As mentioned, many re�nements have been introdu
ed to the BA model to a

ount for some of theexperimentally observed fa
ts. In parti
ular, one 
an make the power-law exponent tunable by a simplemodi�
ation of the atta
hment rule as proposed by Dorogovtsev, Mendes and Samukhin [55℄. Here weshall refer to this model as to the DMS model9 or as to the BA model with initial attra
tiveness. Thealgorithm is similar to that for the BA model. The only di�eren
e is that now a new node 
hooses the7This is sometimes 
alled St. Matthew's e�e
t: �For unto every one that hath shall be given, and he shall have abundan
e:but from him that hath not shall be taken away even that whi
h he hath.� (Matthew XXV:29, KJV).8E.g. for m = 2 for ea
h new node one new triangle is also introdu
ed.9There are also other models proposed by those authors 
alled DMS models in the literature.23



older one to whi
h it 
reates a link, with probability Ak, 
alled atta
hment kernel, proportional to itsdegree plus some 
onstant:
Ak =

k + a0
∑

i ki + a0
, (2.65)where k is the degree of the old node and a0 is 
alled initial attra
tiveness. The model 
an be solved inthe thermodynami
 limit [55℄. The degree distribution for m = 1 reads

Π(k) =
(2 + a0)Γ(3 + 2a0)

Γ(1 + a0)

Γ(k + a0)

Γ(k + 3 + 2a0)
, (2.66)that is Π(k) ∼ k−γ with γ = 3 + a0. The model 
an reprodu
e any power-law exponent larger than 2(a0 > −1), and therefore it 
an be adjusted to experimentally observed degree distributions for real-worldnetworks. One 
an summarize this part of the dis
ussion by saying that DMS model be
ame very popularbe
ause of three important properties: i) it yields s
ale-free networks with tunable exponent γ, ii) thenetworks are small-worlds, iii) the model is easy to handle in the numeri
al and analyti
al treatment.A
tually, DMS networks 
an be easily generated but not so easy as BA ones. The inno
ently looking term

a0 in the atta
hment kernel 
hanges the algorithm 
omplexity, be
ause one 
annot apply the tri
k withpi
king up dire
ted links at random instead of nodes. One has to work with nodes and 
hoose them witha probability 
hanging after ea
h step, whi
h in
reases the 
omputational 
ost. Fortunately, it was shownin [56℄ that the model with m = 1 is equivalent to a model of growing network with re-dire
tion(GNR). The GNR network is 
onstru
ted as follows. Starting from some small initial graph like in theBA model, at ea
h time step one 
hooses a node i with equal probability from the set of existing nodes.Then one introdu
es a new node whi
h is atta
hed with probability 1 − r to i, and with probability r toits an
estor10. With the 
hoi
e r = 1/(a0 + 2) the GNR model is equivalent to the DMS tree model withinitial attra
tiveness a0.One 
an 
onsider even more general atta
hment kernels than Eq. (2.65). For instan
e, one 
an assumethat Ak behaves asymptoti
ally as kα for large k. When α < 1 that is for sub-linear kernels, the degreedistribution is exponentially suppressed [56℄. When α > 1, links tend to 
ondense on one or more nodes,depending on the value of α: for instan
e for α > 2 almost all links 
ondense on a single node. Thisis the �winner takes all� situation. We have mentioned a similar behavior in the previous se
tion whiledis
ussing pseudographs, but there only a �nite fra
tion of links 
ondensed. The situation presented hereis more similar to the 
ondensation of balls on inhomogeneous networks whi
h will be dis
ussed in se
tion3.2.2.2.2.2 Rate equation approa
hIn this subse
tion we shall dis
uss rate equations and show how to use them to 
al
ulate asymptoti
degree distribution for a growing network. We shall follow the approa
h developed in [56℄. First, forsimpli
ity we shall 
onsider BA model with m = 1, that is the ensemble of growing trees with linearatta
hment kernel. The quantity of interest is Nk(N), the number of nodes having degree k when thetotal size of the network is N . Assume that the initial graph 
onsists of two nodes joined by an edge.This means that initially we have Nk(2) = 2δk,1. For m = 1 the growth pro
ess does not introdu
e
y
les, so the graph remains a tree. The assumption about the initial 
on�guration is not 
ru
ial but itsimpli�es 
al
ulations. At ea
h time step a new node is atta
hed to an old node with probability equal to
k/
∑

q qNq, where k is the degree of the old node. Be
ause the sum of all degrees gives 2L, this probabilityis simply k
2L . The pro
ess of growth is random, Nk(N) may 
hange by 0 or 1. We 
an formally write:

Nk(N + 1) = Nk(N) + ξ(k,N), (2.67)where ξ(k,N) is a random variable whi
h may assume values 0, 1. Having the probability distribution of
ξ we 
ould generate ξ(k,N) at any time step N and simulate the pro
ess of growth to get Nk(N). Butwe are interested not in a parti
ular distribution of degrees for one network, but in �typi
al� propertiesof all BA graphs. Therefore we should 
onsider the average 〈Nk(N)〉 rather than Nk(N). The average isover an ensemble of all graphs of size N whi
h 
an be generated by the growth pro
ess. One 
an show[55℄ that this average exists in the limit N → ∞ and that the system self-averages, whi
h means that for
N → ∞ the averages over the ensemble are equal to the averages over one network pi
ked up from thisensemble. Taking the average of both sides of Eq. (2.67) we get

〈Nk(N + 1)〉 = 〈Nk(N)〉 + 〈ξ(k,N)〉 . (2.68)10Be
ause the network is growing (
ausal), one 
an always de
ide whi
h node is older and �x the an
estor-des
endanthierar
hy. 24



The form of the average of the random variable ξ 
an be dedu
ed from the pro
ess of growth. Let usfo
us at some node i having degree k. As a result of an addition of new node to the network, i 
an get anew link with probability k/2L. Thus the average 
hange of 〈Nk(N)〉 will be −〈Nk(N)〉 k/2L be
ause ithappens only when the new node 
hooses one of Nk(N) possible nodes with degree k. But 〈Nk(N)〉 
analso in
rease by 〈Nk−1(N)〉 (k− 1)/2L if the new node 
onne
ts to any node with degree k− 1. The last
ontribution to 〈ξ〉 
omes from addition of a new node with degree k = 1 and is equal to δk,1. Thus thefull equation for the rate of 
hange of 〈Nk(N)〉 reads:
〈Nk(N + 1)〉 = 〈Nk(N)〉 + δk,1 +

k − 1

2(N − 1)
〈Nk−1(N)〉 − k

2(N − 1)
〈Nk(N)〉 , (2.69)where we take advantage of the fa
t that for trees L = N − 1. The equation is exa
t for any N , not onlyin the thermodynami
 limit, and 
ould be solved for 〈Nk(N)〉. Using this equation one 
an also 
al
ulate

Π(k) ≡ 〈Nk(N)〉 /N , i.e. the degree distribution averaged over the ensemble of BA tree graphs. As weshall see it is not an easy task (see Chapter 3, Se
. 3.1.2). It 
an be simpli�ed by negle
ting �nite-size
orre
tions in the limit of large networks, in whi
h 
ase the degree distribution 
an be 
al
ulated bysubstituting 〈Nk(N)〉 = NΠ(k) and assuming that Π(k) tends to a stationary state11. In this 
ase onegets:
Π(k) = δk,1 +

k − 1

2
Π(k − 1) − k

2
Π(k) +O(1/N). (2.70)In the thermodynami
al limit the term O(1/N) 
an be negle
ted. Rearranging this equation:

(k + 2)Π(k) = (k − 1)Π(k − 1) + 2δk,1, (2.71)one immediately obtains
Π(1) = 2/3, (2.72)
Π(k) =

k − 1

k + 2
Π(k − 1), ∀k > 1, (2.73)and by iterating Eq. (2.73) one eventually arrives at the following degree distribution for k ≥ 1:

Π(k) =
4

k(k + 1)(k + 2)
. (2.74)Following [56℄, let us apply the same method for a general atta
hment kernel Ak. Now, the probabilitythat a new node will be atta
hed to the older one with degree k, is Ak/A(N) whereA(N) is a normalization
oe�
ient:

A(N) =
∑

k

AkNk(N). (2.75)In the limit N → ∞, all Nk ∼ N and thus we 
an assume that A(N) ≈ Nη where η is some 
onstantto be determined later. Pro
eeding exa
tly as above for pure BA model, we get the rate equation in theform:
Π(k) = δk,1 +

Ak−1

η
Π(k − 1) − Ak

η
Π(k), (2.76)whi
h 
an be solved with respe
t to Π(k):

Π(k) =
η

Ak

k
∏

j=1

(

1 +
η

Aj

)−1

. (2.77)The parameter η 
an be obtained from the normalization of the degree distribution: ∑k Π(k) = 1. If wenow assume a shifted linear kernel like in the DMS model: Ak = a0 + k, we �nd
Π(k) =

η

a0 + k

a0 + 1

a0 + 1 + η
· · · a0 + k

a0 + k + η
=

η

a0 + k

Γ(a0 + k + 1)/a0!

Γ(a0 + k + η + 1)/(a0 + η)!
, (2.78)and η = 2 + a0 as follows from A(t) =

∑

k(k + a0)Nk(N) = 2L+Na0. Inserting this into Eq. (2.78) weend up with Eq. (2.66). It redu
es to the BA degree distribution (2.74) for a0 = 0, that is for the purelylinear atta
hment kernel. In �gure 2.8 we show plots of Π(k) 
al
ulated analyti
ally using Eq. (2.78)25
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Figure 2.8: Left: Degree distribution for pure BA model with m = 1, n0 = 2 for networks of di�erentsizes. Solid lines from left to right: N = 1000, 2000, 4000, averaged over 106 generated networks. Cir
les:
Π(k) for a single network with N = 107. As N grows, plots approa
h theoreti
al distribution Π(k) ∼ k−3.One also sees that averaging over the ensemble is (up to �nite-size e�e
ts) equivalent to averaging overone large network (self-averaging). Right: plots of Π(k) for DMS models with N = 106 and various a0,
ompared to the theoreti
al distributions (2.66). The plots 
orrespond to a0 = 2.1 (the smallest slope),
a0 = 3 and a0 = 4 (the largest slope). All results are averaged over 100 networks generated in the GNRmodel, equivalent to the DMS model.and measured in numeri
al simulations of networks generated by the GNR version of growing networkalgorithm for various a0.The same method allows one to determine Π(k) for sub- and super-linear kernels, 
ited in the previousse
tion, or to 
al
ulate degree distribution for non-tree growing networks [55, 57℄. It 
an also be used to�nd degree-degree 
orrelations [56℄ by writing a rate equation for Nk,q, the number of nodes with degree
k atta
hed to an
estor nodes of degree q. The exa
t result for BA is fairly 
ompli
ated, but in the limit
k, q → ∞ with y = q/k kept �xed, it simpli�es to

Nk,q ∼= Nk−4 4y(y + 4)

(1 + y)4
. (2.79)This fun
tion has a maximum at y ≈ 0.372 whi
h means that the an
estor node's degree is approximately

37% of its des
endant. The 
orrelation fun
tion ǫkq de�ned in Se
. 1.3 and 
al
ulated from the formula:
ǫ(k, q) =

Nk,q +Nq,k
L

, (2.80)does not fa
torize: ǫ(k, q) 6= ǫr(k, q) whi
h means that the network is 
orrelated. A similar behavioris observed for shifted atta
hment kernels. The assortativity 
oe�
ient A de�ned in Eq. (1.6) 
an be
al
ulated for pure BA model. From Eq. (41) in [56℄, and Eq. (2.80) we obtain
ǫ(k, k) =

2(5k2 − 3k − 2)

k2(1 + k)2(4k2 − 1)
. (2.81)Using Eq. (1.6) after some tedious but straightforward 
al
ulations we �nd:

A =
33 − 24 ln 4

42 − 4π2
≈ −0.1075, (2.82)whi
h stands in a very good agreement with numeri
al simulations. This indi
ates that the BA growingtree network is disassortative.Many improvements of BA growing network models have been proposed (for a review, see e.g. [4℄). Thegrowing BA network 
an be used as an initial 
on�guration for the algorithms, like those des
ribed before,to generate s
ale-free networks with some features enhan
ed [6℄. In this way one 
an also extrapolatebetween 
ausal and equilibrated networks.11One 
an show that Nk's from Eq. (2.69) grow as ∼ N [56℄ for large N and therefore Π(k) has a stationary state in thethermodynami
al limit. 26
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ausal labellings are surrounded by dashedre
tangles.2.2.3 Statisti
al ensemble formulation of growing networksAlthough many properties of growing networks 
an be understood using rate equations, sometimes it is
onvenient to introdu
e the ensemble of 
ausal graphs and 
al
ulate desired quantities from the partitionfun
tion. As mentioned, su
h an ensemble 
annot be thought as an ensemble with the Gibbs measure,in the usual statisti
al sense, but merely as an ensemble of networks whi
h 
an be obtained in a growthpro
ess, if this pro
ess is terminated at some moment of time. In this subse
tion we shall de�ne su
h anensemble for trees with the produ
t weight (2.24). As we shall see, the model is on the one hand solvableand on the other hand it exhibits non-trivial behavior. In parti
ular, we shall be able to quantify thee�e
ts of 
ausality.Be
ause a tree with N nodes has L = N − 1 links, we shall de�ne the 
anoni
al partition fun
tionwhi
h depends only on N :
Z(N) =

1

N !

∑

α∈lct(N)

n(α)p(k1) · · · p(kN ), (2.83)where the sum runs over all labeled 
ausal tree graphs. The 
ausal ordering of nodes' labels sele
ts arelatively small fra
tion of all possible labeled trees. The 
al
ulation of Eq. (2.83) is mu
h simpler forplanted rooted trees, i.e. trees with an additional link (a stem) atta
hed to one of its nodes. The stema
ts as an additional link whi
h marks one node of the tree and in
reases its degree by one. Be
ause onlyone node is marked, in the thermodynami
 limit ensembles of trees and planted rooted trees have roughlythe same properties. In �gure 2.9 graphs with N = 1, 2, 3 are sket
hed. Following [37℄ we shall derivea re
ursion relation for Z(N). First, we observe that every tree of size N + 1 
an be 
onstru
ted fromtrees of sizes N1, . . . , Nq where∑q
i=1Ni = N , by atta
hing their stems to a 
ommon node (see Fig. 2.10).This new node is atta
hed to a new 
ommon stem. Denoting by n(N) the number of di�erent labellingsfor the set of trees of size N we have

n(N + 1) =
N !

N1! · · ·Nq!
1

q!
n(N1) · · ·n(Nq). (2.84)The origin of fa
torials is the following. The whole tree has N + 1 labels, but the smallest label mustbe atta
hed to the root be
ause of the 
ausality. The remaining N labels 
an be distributed arbitrarily.All Ni! permutations of Ni labels of a subtree are undistinguishable and thus they give the same graph.To avoid over
ounting one divides by Ni!. This leads to the multinomial fa
tor. In addition, q subtrees
an be permuted in q! possible ways giving the same labeled graph, thus we have to divide by q!. Thefun
tional weight W (N + 1) for the set of 
ompound trees also fa
torizes:

W (N + 1) = p(q + 1)W (N1) · · ·W (Nq). (2.85)Noti
e that the new node has degree q + 1 be
ause the root is 
ounted as a link. The partition fun
tion27
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tion of a new planted rooted tree from q = 3 trees of size N1, N2, N3. The large
ir
le denotes the set of all trees of given size. One node (small 
ir
le) is distinguished by the stem joinedto it. The new set of trees of size N1 +N2 +N3 + 1 is obtained by joining the trees from the left-handside to a new 
ommon rooted node (right-hand side). The new node has degree four sin
e the root is
ounted as a link.(2.83) 
an be expressed as a sort of self-
onsisten
y equation for Z(N):
Z(N + 1) =

1

(N + 1)!

∞
∑

q=1

∑

N1,...,Nq

δN,N1+···+Nq

N !

N1! · · ·Nq!
1

q!
n(N1) · · ·n(Nq)

× p(q + 1)W (N1) · · ·W (Nq)

=
1

N + 1

∞
∑

q=1

p(q + 1)

q!

∑

N1,...,Nq

δN,N1+···+Nq

q
∏

i=1

Z(Ni), (2.86)where Z(N) appears on both sides. The sum goes over all subtrees 1, 2, . . . , q of sizes N1, . . . , Nq withthe only 
onstraint given by the delta fun
tion. The 
onstraint 
an be de
oupled by introdu
ing agrand-
anoni
al partition fun
tion:
Z(µ) =

∞
∑

N=1

Z(N)e−Nµ, (2.87)whi
h is just a generating fun
tion for the 
anoni
al partition fun
tions Z(N). Here µ is the 
hemi
alpotential but 
ontrary to the previous de�nition (2.16), it 
ontrols the average number of nodes, notlinks12. Multiplying both sides of Eq. (2.86) by (N + 1)e−(N+1)µ and summing over N = 1, . . . ,∞ weget:
∞
∑

N=2

NZ(N)e−Nµ = e−µ
∞
∑

q=1

p(q + 1)

q!

(

∞
∑

Ni=1

e−µNiZ(Ni)

)q

. (2.88)If we add the term Z(1)e−µ to both sides of this equation, the left-hand side be
omes just a derivative of
−Z(µ) with respe
t to µ, while the right-hand side is a sum over q extended to the range q = 0, . . . ,∞,whi
h additionally in
ludes the term for q = 0. Thus we get

Z ′(µ) = −e−µF (Z(µ)), (2.89)where F (x) is the generating fun
tion for the distribution p(k) like in Eq. (2.50):
F (x) =

∞
∑

q=0

p(q + 1)
xq

q!
. (2.90)This series may have a �nite or in�nite radius of 
onvergen
e, x0. The equation (2.89) 
an be integratedover dµ. This yields

e−µ(Z) =

∫ Z

0

dx

F (x)
, (2.91)and be
ause13 F (x) > 0 for x > 0 and F (x) → ∞ for x ≥ x0, the integral is bounded from above. Hen
ethe 
hemi
al potential µ(Z) is bounded from below: µ→ µ0 as Z → ∞. This means that Z as a fun
tion12Be
ause L = N − 1, the di�eren
e is in fa
t meaningless.13We 
an ex
lude the trivial 
ase when all p(q)'s are zero.28
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tions dis
ussed in se
tion 2.2.3.of µ has a singularity at µ0 (see Fig. 2.11):
µ0 = − ln

∫ x0

0

dx

F (x)
. (2.92)From de�nition of the partition fun
tion (2.87) we have that Z(N) shall grow as ∼ eµ0N or faster.We assume now that the ensemble of trees is normal in the statisti
al-thermodynami
al sense, that is

Z(N) ∝ eµ0N . As we have seen, this is not true for simple graphs, but the number of 
ausal trees growsonly as (N − 1)! [35℄ and not as ∼ (N2)! for graphs. Therefore, many quantities as for instan
e degreedistribution 
an be obtained from the 
riti
al value µ0. For example, a

ording to Eq. (2.35) the degreedistribution reads
Π(k) = p(k)

∂µ0

∂p(k)
=

p(k)

(k − 1)!

∫ x0

0
dx xk−1

F 2(x)
∫ x0

0
dx
F (x)

. (2.93)Thus, similarly as for simple graphs, by tuning p(k) one 
an obtain any desired degree distribution. It is,however, not as trivial as in 
ase of Eq. (2.36) be
ause the dependen
e on F (x) is now more 
ompli
ated.Some interesting distributions were investigated in [37℄. For instan
e, with the 
hoi
e p(k) = (k−1)!, thegenerating fun
tions reads F (x) = (1 − x)−1 and has the radius of 
onvergen
e x0 = 1. The integrals in(2.93) 
an be done analyti
ally. The result is
Π(k) =

4

k(k + 1)(k + 2)
, (2.94)so one re
overs the BA degree distribution. We 
an show that, indeed, 
ausal trees with the produ
tweight

W (α) = (k1 − 1)! · · · (kN − 1)! (2.95)form the same ensemble as BA growing trees. To this end, let us 
onsider a set of all 
ausal trees α whi
hfor a given degree sequen
e k1, . . . , kN have the statisti
al weight W (α) given by Eq. (2.95). Imaginealso that we have a Markov pro
ess whi
h generates su
h trees. First, we see that the number of possible
ausally labeled trees in this set is obviously the same as in the BA model. We have to 
he
k whetheralso the statisti
al weights are the same in both 
ases. Imagine that we take a graph α with N nodeswith degrees k1, . . . , kN and atta
h a new node by linking it to a node n. We obtain a new 
on�guration
β, whi
h has now N + 1 nodes with degrees k1, . . . , kn + 1, . . . , kN , 1. The transition probability α → βfor a pro
ess whi
h has a stationary distribution (2.95) is

P (α→ β) ∝ W (β)

W (α)
=

(k1 − 1)! · · ·kn! · · · (kN − 1)! · 1
(k1 − 1)! · · · (kN − 1)!

= kn (2.96)and we see that it is identi
al to that for linear atta
hment kernel in the BA growth pro
ess. In 
on
lusion,this shows the equivalen
e of the two approa
hes.The formulation of the BA model of growing networks via statisti
al ensemble 
an be used to 
al
ulatedegree-degree 
orrelations or the average distan
e 〈r〉 between any two nodes [37℄. For instan
e, it 
anbe found that 〈r〉 ∼= (1/2) lnN , that is the BA network really displays the small-world phenomenon.2.3 Causal versus equilibrated networksSo far we have dis
ussed equilibrated and 
ausal networks separately. We have shown that for both
lasses some properties of networks 
an be essentially the same, as for instan
e the power-law degree29
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Figure 2.12: The distan
e distribution G(r) for unweighted equilibrated trees (
ir
les), s
ale-free equili-brated trees (diamonds) and s
ale-free 
ausal trees (squares) of size N = 1000. S-F 
ausal trees are theshortest.distribution. Now we shall 
ompare these two ensembles and see that although Π(k) 
an be identi
al inthe thermodynami
 limit, some other 
hara
teristi
s of the network topology are di�erent for 
ausal andequilibrated graphs. As shown in [35℄, 
ausal trees form only a small subset of all trees. The same is truefor simple graphs. The fra
tion of 
ausally labeled trees among all labeled trees is only ∼ N3/2e−N . Sothe 
han
e of pi
king up at random a 
ausal tree from the set of all trees vanishes when N grows. Weshall show that geometri
al properties of typi
al trees in this subset are quite di�erent from those in thewhole set.Let us �rst 
onsider the ensemble of unweighted equilibrated trees and the 
orresponding ensemble for
ausal trees. Here �unweighted� means that all trees have the same fun
tional weight equal to one. We 
annow 
al
ulate some geometri
al quantities for trees in the �rst and in the se
ond ensemble. An exampleof su
h a quantity is the average distan
e 〈r〉. In fa
t, one 
an 
al
ulate it analyti
ally [37, 56, 58, 59, 60℄.For equilibrated trees it is
〈r〉 ∼

√
N, (2.97)whi
h means that the fra
tal dimension of typi
al equilibrated trees is equal to 2. These trees are thereforerather elongated and 
ertainly are not small-worlds so abundantly observed in nature. On the other hand,for 
ausal trees,

〈r〉 ∼ lnN, (2.98)hen
e the fra
tal dimension is in�nite. This is be
ause most of nodes 
on
entrate around the oldest node.A similar observation was made for weighted trees with BA degree distribution [35℄. An even betterinsight into geometri
al properties of trees (or graphs) is provided by the distribution G(r) of distan
es
r between all pairs of nodes:

G(r) =

〈

1

N2

∑

i,j

δr,r(ij)

〉

. (2.99)Here r(ij) is the length of the shortest path between two nodes i, j. The average distan
e is the mean ofthis distribution: 〈r〉 =
∑

r rG(r). In �gure 2.12 we present a 
omparison of G(r) for equilibrated and
ausal trees of the same size. Causal trees were generated using the BA model while for equilibratedtrees we used the Monte Carlo algorithm des
ribed in se
tion 2.1.5. The weights p(k) = 4(k− 1)!/(k(k+
1)(k+2)) were 
hosen a

ording to Eq. (2.49) to get the same degree distribution as in the BA model. InFig. 2.13 we see that indeed both types of trees have the same Π(k), so one 
annot easily distinguish towhi
h ensemble the given tree belongs, by only measuring14 Π(k). But one easily sees in Fig. 2.12 thatthe 
ausal trees are mu
h shorter than the equilibrated ones. If we assume that the average distan
es
ales for equilibrated trees like

〈r〉h ∼
√

N/ lnN, (2.100)and for 
ausal trees:
〈r〉c ∼ lnN, (2.101)14We shall see in the next 
hapter that this statement is true only in the thermodynami
 limit. For any �nite N thereare �nite-size 
orre
tions, whi
h are di�erent for both ensembles. To see a di�eren
e 
oming from the �nite-size 
orre
tionone has to have mu
h better statisti
s than in �gure 2.13. 30
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Figure 2.14: Left: G(r) for equilibrated trees plotted in the res
aled variable: x = r/
√

N/ lnN fordi�erent sizes N = 500, 1000, 2000, 4000. Right: the same quantity for 
ausal trees, for x = r/ lnN .Continuous lines are given by Eqs. (2.102) and (2.103).we 
an plot 
urves G(r) for di�erent N in the res
aled variable x ≡ r/ 〈r〉 and observe that they 
ollapseto some 
hara
teristi
 
urves but di�erent for ea
h of the two ensembles (see Fig. 2.14). The fun
tion
Gh(x) for equilibrated trees is well approximated by

Gh(x) = Ax exp(−Bx2/2), (2.102)while for 
ausal trees by
Gc(x) = A′ exp(−(x− x̄)2/B′), (2.103)with some parameters A,A′, B,B′, x̄ �tted to data. So again, the average node-node distan
e is smallerfor the 
ausal trees than for the equilibrated ones with the same degree distribution. The e�e
t isqualitatively the same when one 
onsiders simple graphs instead of trees. Thus the 
ausality enhan
esthe small-world e�e
t by in
reasing the relative weight of graphs with 
lusters of nodes around the oldestverti
es.There are many other di�eren
es between the 
ausal and equilibrated networks. We shall give onemore example showing the di�eren
e in degree-degree 
orrelations in both types of trees. A quantitywhi
h is 
ommonly used to study these 
orrelations is the average degree k̄nn(k) of the nearest neighborsof a node with degree k, de�ned in Se
. 1.3 and expressed through Eq. (1.5). For un
orrelated graphs itis ǫr(k, q) = kqΠ(k)Π(q)/ 〈k〉2 and thus

k̄nn(k) =

〈

k2
〉

〈k〉 , (2.104)whi
h gives a 
onstant value k̄nn = 1 + k̄ for maximally random graphs in the ER model. In general 
ase31
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Figure 2.15: Plots of k̄nn(k) for ER random graphs (diamonds), random trees with BA degree distribution(squares) and 
ausal BA trees (
ir
les). Both 
ausal and random trees are disassortative, but they di�erin approa
hing k → ∞. The des
ent of experimental 
urves for large k is 
aused by �nite-size e�e
ts.Theoreti
al 
urves (solid lines) are 
al
ulated from Eqs. (2.105) and (2.106).for equilibrated trees with an arbitrary degree distribution it 
an be shown [38℄ that
k̄nn(k) = 2 +

1

k

(〈

k2
〉

− 4
)

. (2.105)This result di�ers from the 
orresponding one for 
ausal trees. For instan
e, for 
ausal trees with BAdegree distribution [61℄,
k̄nn(k) =

〈

k2
〉

2

(

1

2
+

1

k

)

. (2.106)The se
ond moment 〈k2
〉 depends on the size N and 
an be 
al
ulated for growing BA trees [62℄:

〈

k2
〉

= (2 − 2/N)H(N − 1). (2.107)Here H(n) =
∑n

i=1 1/i is the harmoni
 number. The same formula performs well for random BA trees.In �gure 2.15 we plot k̄nn(k) for BA 
ausal and equilibrated graphs, and also for ER graphs. FromEq. (2.105) we get k̄nn(k) → 2 when k approa
hes in�nity, while for 
ausal trees the limiting value isproportional to the se
ond moment of the degree distribution, and thus diverges for N → ∞. This meansthat the a�nity of nodes with higher degrees and their tenden
y to 
luster together grow with the sizeof tree. This is another argument supporting the 
onje
ture that 
ausal trees are more 
ompa
t than the
orresponding equilibrated ones.

32



Chapter 3Appli
ations to modeling 
omplexnetworksIn this 
hapter we present some further appli
ations of the mathemati
al methods developed so far.First we shall quantify �nite-size e�e
ts in networks. Usually, while dis
ussing networks one 
al
ulatesquantities of interest in the thermodynami
 limit N → ∞. As we will show su
h a pro
edure maylead to negle
ting some important e�e
ts, whi
h are seen for �nite networks. In parti
ular, the node-degree distribution exhibits for �nite N apparent deviations from the limiting distribution. We will �ndan expli
it form of �nite-size 
orre
tions to the s
ale-free behavior for growing networks and talk over
orre
tions for homogeneous graphs. A se
ond problem whi
h shall be dis
ussed in this 
hapter 
on
ernsa very important 
lass of phenomena whi
h des
ribe the dynami
s of statisti
al pro
esses on networks.On the example of a zero-range pro
ess we will show the usage of te
hniques developed in the previous
hapter.3.1 Finite-size e�e
ts in networksIn the pre
eding 
hapter we dis
ussed some popular models of networks, for whi
h we determined degreedistribution, 
lustering 
oe�
ient, diameter et
., in the limit of in�nite networks. The derivation of exa
tanalyti
al result was possible be
ause in this limit stru
tural 
onstraints, like for example that on thesum of degrees, be
ome less important and some of them loose their virtue at all. For instan
e, wementioned that in the thermodynami
 limit the 
anoni
al ensemble for homogeneous graphs with �xed Lis equivalent to the grand-
anoni
al one where L 
an in prin
iple �u
tuate1. However, it is not the 
asefor �nite N and one has to in
orporate the e�e
t of �nite-size 
onstraints into 
al
ulations.One must be very 
areful while 
omparing models solved in the thermodynami
 limit to real-worldnetworks. For �nite N , some lo
al quantities like node degrees are bounded from above. There are alsosome e�e
ts resulting from network's features whi
h are rare but 
an signi�
antly 
hange the pi
ture forsmall graphs. For example, it is known that in many models, as for instan
e in the ER model, largegraphs are essentially trees, be
ause the average number of 
y
les of �nite length is 
onstant and doesnot depend on the network size N . On the other hand, for smaller graphs, short loops play an importantrole. Their presen
e shapes the network and strongly a�e
ts its global properties.In next se
tions we shall dis
uss one type of �nite-size e�e
ts, namely that whi
h is related to theappearan
e of a 
uto� in the degree distribution of �nite networks. We will present our re
ent �ndingsfor various graphs and 
ompare them to those from the literature.3.1.1 Cuto� in the degree distributionAs we have pointed out in Se
. 1.3, for any �nite network the power-law behavior of the degree distribution
Π(k) 
an hold only for values of k signi�
antly smaller than N . Both experimental data and theoreti
almodels of s
ale-free networks indi
ate that the behavior of Π(k) for k ≫ 1 for a �nite network exhibitstwo regimes: below some kmax it follows the power-law behavior as in an in�nite network while above
kmax it displays a mu
h faster de
ay. The 
hara
teristi
 degree kmax whi
h separates these two regimesis 
alled a 
uto�. Intuitively, the 
uto� 
omes about due to the fa
t that the overall number of linkspresent in a �nite, non-degenerated graph is restri
ted and so is also the degree of ea
h node. Thus1We have shown this expli
itly for equally weighted random graphs. A more general situation is 
onsidered in [18℄.33



for any �nite network the power-law behavior of the degree distribution is trun
ated. In 
onsequen
e,many quantities 
al
ulated on �nite networks signi�
antly di�er from their 
ounterparts derived in thethermodynami
 limit. One 
an see this e�e
t for example when one 
al
ulates per
olation thresholds forstatisti
al systems on networks, like for instan
e those des
ribing infe
tion spreading for real diseases or
omputer viruses.Many attempts were undertaken to estimate the position of the 
uto� for di�erent s
ale-free networks,most of them 
on
entrated on sparse networks where the average degree k̄ is �xed. This restri
ts the
lass of distributions Π(k) to those whi
h have a �nite mean value, and the power-law tail exponent tothe range γ > 2, whi
h is indeed observed for real networks.Arti
le α for 2 < γ < 3 α for γ > 3(a) [63℄, homog. simple graphs 1/(5 − γ) * 1/2 *(b) [64℄, homog. simple graphs 1/2 * 1/(γ − 1) *(
) [65℄, un
orrelated networks 1/2 1/(γ − 1)(d) Pseudographs 1/(γ − 1) 1/2(e) [66℄, growing trees 1/(γ − 1)(f) [34℄, homog. trees 1/(γ − 1)
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Table 3.1: Some results for the exponent α in the 
uto� kmax ∼ Nα. A star (*) denotes two in
onsistentpredi
tions. By pseudographs we understand graphs with self- and multiple-
onne
tions with the partitionfun
tion (2.31), for whi
h 
orre
tions to the degree distribution (2.36) 
an be found by observation thatit is equivalent to so 
alled balls-in-boxes model [36℄, and 
al
ulated in the limit of large but �nite N[67℄. In �gure on the right-hand side we 
ompare di�erent exponents graphi
ally. Left axis: kmax for thenetwork of size N = 1000, right axis: the value of α.In general, the position of the 
uto� kmax s
ales as Nα for large N with an exponent α < 1. Thevalue of the exponent depends on the type of network. In table 3.1 we 
olle
t some values α 
al
ulatedfor S-F graphs of various type, together with referen
es to the original papers where the quoted valueswere derived. The exponent α is 
al
ulated as a fun
tion of the exponent γ in the power-law tail ofthe underlying degree distribution. In the dis
ussion of S-F networks one should di�erentiate betweenequilibrated and growing networks, and simple graphs, pseudographs and trees. Note, however, that for
γ = 3, α = 1/2 in all 
ases. The value γ = 3 is in a sense marginal be
ause it separates the regime ofanomalous �u
tuations for γ < 3 and of normal �u
tuations for γ > 3. In the former 
ase 〈k2〉 is in�nitein the limit N → ∞ while in the latter one it is �nite.Let us make some remarks on the results in the table. First, the result (a) has been found re
entlyin [63℄ in the statisti
al ensemble approa
h. It is in disagreement with the results (b). The authors [63℄
laim that (b) gives only an upper bound on the value of the exponent α for 2 < γ < 3. Se
ond, thes
aling for trees seems to be the same for growing (e.g. the BA model) and equilibrated ones. Third,equilibrated pseudographs have di�erent 
uto�s than simple graphs or trees. Fourth, the result (
) appliesonly to hypotheti
 un
orrelated graphs with no 
orrelations between degrees of nearest neighbors. Any�nite network has 
ertain 
orrelations of su
h type, simply be
ause of global 
onstraints like that on thesum of degrees 
oming from the �xed number of links L. Therefore, as we have mentioned in Chapter2, the two-point 
orrelation fun
tion ǫ(k, q) 6= ǫr(k, q) even if we do not introdu
e 
orrelations expli
ite.For instan
e, Π(N − 1) 
an be non-zero for simple graphs but then it is impossible to pi
k a link joiningnodes both of degree k = N − 1 as it would stem from Eq. (1.4). The authors [65℄ are aware of this e�e
tand 
on
lude that for assortative networks the 
uto� should be smaller than the one predi
ted in table3.1 while in 
ase of disassortativity it should be larger.The results in the table were obtained with the help of di�erent methods. For homogeneous networksmany of them were based either on some simple probabilisti
 arguments or extreme values statisti
s.Those methods allow one to determine the 
uto� but not the shape of the fun
tion giving the �nite-size
orre
tion to the degree distribution. For growing networks, however, the shape of the 
orre
tions 
anbe found. In [66℄ the BA model of growing tree network has been solved for �nite N . The authors have
al
ulated the mean number of nodes of a given degree for the network of size N and dedu
ed the formof the 
orre
tion to the degree distribution for the pure BA model with γ = 3. In the next se
tion weshall present a more general method whi
h also applies to other growing networks and we shall use it todetermine the form of the 
uto� fun
tion. In the last se
tion we shall present Monte Carlo simulations ofnetworks whi
h allow for the estimation of the 
uto� fun
tion and the exponent α, and we shall 
ompare34



the results to those in table 3.1.3.1.2 Growing networksHere we would like to present the method of determining of the 
uto� fun
tions for growing networks.We shall explain it for the BA growing networks with initial attra
tiveness [63℄ des
ribed in Se
. 2.2.1.Some of results presented here were obtained in Ref. [66℄. However, our approa
h is di�erent and allowsfor solving more sophisti
ated variants of the model. Before we start, let us give some key points of themethod here. We begin with the rate equation for the average number of nodes Nk(N) of a given degree
k. The average is taken over the 
anoni
al ensemble of growing trees as in Se
. 2.2.2. The solution ofthe rate equation in the limit of large N gives, up to a normalization 
onstant, the degree distribution
Π∞(k) for the in�nite network.For a �nite network, we de�ne Π(k) as a produ
t of the limiting degree distribution Π∞(k) and a
uto� fun
tion v(k,N) giving �nite-size 
orre
tions. The re
ursion equation for this fun
tion 
an beobtained from that for Nk(N). The next ingredient of the method is to 
onsider moments of the 
uto�fun
tion. One 
an derive re
ursive equations for the moments from the re
ursion relations for v(k,N). Theequations 
an be solved re
ursively and one 
an derive expli
it asymptoti
 expressions for the momentsfor su�
iently large but �nite N . The knowledge of all moments makes it possible to re
onstru
t theleading behavior of the 
uto� fun
tion v(k,N). This is the sket
h of the method whi
h we shall explainbelow in details. Although the idea is very simple, its implementation leads to quite 
ompli
ated andlengthy 
al
ulations whi
h we omit here, referring the reader to the original paper [62℄.We start from the BA tree model with m = 1, a0 = 0 and thus γ = 3. Like in Se
. 2.2.2, as an initial
on�guration we take the graph with n0 = 2 nodes joined by a link (a dimer 
on�guration), therefore
Nk(2) = 2δk,1. At ea
h time step a new node is added and 
onne
ted to one of N existing nodes in thesystem, with the probability proportional to the number of the preexisting links of the 
orrespondingnode, leading to a new network with N + 1 nodes. A

ording to Eq. (2.69), the rate equation for theaverage number Nk(N) has the form:

Nk(N + 1) = Nk(N) + δk,1 +
k − 1

2(N − 1)
Nk−1(N) − k

2(N − 1)
Nk(N), (3.1)where, for brevity, we have omitted the angle bra
kets denoting the average. The origin of all terms hasbeen already explained in Se
. 2.2.2. This equation is exa
t for any N . In the limit of N → ∞ it has asolution given by Nk(N) ≈ NΠBA(k), where

ΠBA(k) =
4

k(k + 1)(k + 2)
(3.2)is the degree distribution in the BA model. Here we are, however, interested in the general solution for

Nk(N) ≡ NΠ(k,N), with Π(k,N) being the degree distribution for a �nite network. It is 
onvenientto split Π(k,N) into the produ
t of the known fun
tion ΠBA(k) and an unknown fun
tion v(k,N)giving �nite-size 
orre
tions. With the substitution Nk(N) = ΠBA(k)v(k,N), the equation (3.1) 
an berewritten in terms of v(k,N):
v(k,N) =

3

2
δk,1 +

2 + k

2(N − 2)
v(k − 1, N − 1) − 4 − 2N + k

2(N − 2)
v(k,N − 1). (3.3)Multiplying now both sides of Eq. (3.3) by kq and summing over k = 1, . . . ,∞ we get

mq(N + 1) =
1

2N

(

3 +

q−1
∑

i=0

cqimi(N) + (2N + q + 1)mq(N)

)

, (3.4)where de�ne moments mq(N) for the distribution v(k,N) as follows:
mq(N) =

1

N − 1

∞
∑

k=1

kqv(k,N). (3.5)The normalization 
onstant 1/(N − 1) has been 
hosen for the later 
onvenien
e. The initial 
onditionreads
mq(2) = 3, (3.6)35



for all q as 
an be found for the initial 
on�guration. The 
oe�
ients cqi are given by:
cq0 = 3, and cqi = 3

(

q

i

)

+

(

q

i− 1

) for i > 0. (3.7)The equation (3.4) 
an be solved re
ursively starting from the lowest moments m0,m1,m2, . . . . Fromexpressions for the �rst moments we 
an infer that the general solution has the form:
mq(N) =

1

Γ(N)

q+1
∑

i=0

Bqi
Γ(2 + i/2)

Γ(N + i/2), (3.8)with some 
oe�
ients Bqi, yet unknown. The equation for 
oe�
ients Bqi 
an be found by inserting(3.8) into Eq. (3.4). For large N , the leading behavior of mq(N) is 
ontrolled by the term proportionalto Bq,q+1:
mq(N) ≃ Bq,q+1

Γ [N + (q + 1)/2]

Γ(N)Γ(2 + (q + 1)/2)
≃ N

q+1
2 Aq, (3.9)with Aq ≡ Bq,q+1/Γ((5+ q)/2). Ea
h two 
onse
utive moments mq+1 and mq di�er by a prefa
tor N1/2,so 
learly the 
uto� fun
tion must have the form:

v(k,N) ≃ Nw(k/
√
N), (3.10)where w(x) is a universal (independent of N) 
uto� fun
tion having moments equal to Aq:

Aq =

∫ ∞

0

dxw(x)xq . (3.11)Therefore, the leading 
orre
tion to the degree distribution for a large but �nite BA tree network is
Π(k,N) = ΠBA(k)w

(

k√
N

)

. (3.12)The exponent α = 1/2 stemming from this equation agrees with the result for trees presented in Table3.1. The fun
tion w(x) 
an be found in two ways. First, we 
an evaluate numeri
ally Eq. (3.3) for somelarge N and then res
ale variables a

ording to Eq. (3.10). Se
ond, it 
an be obtained analyti
ally byre
onstru
ting it from the moments Aq, whi
h express through the 
oe�
ients Bq,q+1. Without goinginto the details we quote the result for the moments Aq [62℄:
Aq =

(2 + q)2q!

Γ((3 + q)/2)
. (3.13)Using the asymptoti
 behavior of Eq. (3.13) we 
an infer the form of the 
uto� fun
tion w(x) for largevalues of the argument:

lnAq ≈
1

2
q ln q. (3.14)Let us now 
ompare Eq. (3.14) with the behavior of moments Iq of the fun
tion exp [−(x/σ)ρ]:

Iq =

∫ ∞

0

xq exp [−(x/σ)ρ] dx =
σq+1

ρ
Γ

(

q + 1

ρ

)

. (3.15)For large q the leading term of ln Iq ≈ (q ln q)/ρ with ρ = 2 is the same as in Eq. (3.14), i. e. the tailof w(x) de�ned by its higher moments falls like a Gaussian. The parameter σ is found by 
omparingsub-leading terms in Iq and Aq. The value σ = 2 obtained in this way will be 
on�rmed below by a dire
t
al
ulation of w(x). To this end we de�ne a generating fun
tion:
M(z) =

∞
∑

q=0

Aq
zq

q!
. (3.16)Comparing this de�nition with Eq. (3.11) we see that M(z) =
∫∞

0 exp(zx)w(x)dx so that
M(−z) =

∫ ∞

0

exp(−zx)w(x) dx (3.17)36



is the Lapla
e transform of w(x). Therefore w(x) is given by the inverse Lapla
e transform of M(z) or,equivalently, by the Fourier transform of M(−iz):
w(x) =

1

2πi

∫ i∞

−i∞

dz ezxM(−z) =
1

2π

∫ ∞

−∞

dz eizxM(−iz). (3.18)Using the expli
it form of 
oe�
ients Aq we get
M(z) =

∞
∑

q=0

(2 + q)Γ(q + 3)

Γ(q + 2)Γ((3 + q)/2)
zq. (3.19)This series has an in�nite radius of 
onvergen
e. The fun
tion M(z) given by Eq. (3.19) is a spe
ial 
aseof a more general power series:

M(z) = N
∞
∑

q=0

(aq + b)Γ(q + ξ)

Γ(q + ζ)Γ(χq + ψ)
zq, (3.20)belonging to the 
lass of so 
alled Fox-Wright Ψ fun
tions [68, 69℄. In [62℄ it has been shown that itsinverse Fourier transform, that is w(x), 
an be expressed through a 
ombination of auxiliary fun
tions

f̃χ,ψ,ξ,ζ(x). In general, they are de�ned as follows:
f̃χ,ψ,ξ,ζ(x) =

∑

i

ressi

[

Γ(ξ − s)Γ(1 − s)

Γ(ζ − s)Γ(ψ − χs)
xs−1

]

s=si

, (3.21)where the sum runs over all points si at whi
h either Γ(1− s) or Γ(ξ − s) has a pole. The above formulasimpli�es for ξ, ζ being positive integers m,n:
f̃χ,ψ,m,n(x) =

∞
∑

q=0

(−x)q (m− 2 − q)(m− 3 − q) · · · (n− 1 − q)

Γ(ψ − χ− χq)q!
. (3.22)The �nal formula for w(x) for arbitrary χ, ψ, ξ, ζ reads

w(x) = N
(

axf̃χ,ψ−χ,ξ−1,ζ−1(x) + (b− a)f̃χ,ψ,ξ,ζ(x)
)

, (3.23)where f̃ is given either by Eq. (3.22) or by more general Eq. (3.21). In our 
ase, whi
h 
orresponds to
N = 1, a = 1, b = 2, χ = 1/2, ψ = 3/2, ξ = 3, ζ = 2, the fun
tion w(x) is given by

w(x) = xf̃1/2,1,2,1(x) + f̃1/2,3/2,3,2(x) =

∞
∑

q=0

(−x)q
q!

[ −qx
Γ(1/2 − q/2)

+
1 − q

Γ(1 − q/2)

]

. (3.24)After some algebrai
 manipulations we get the fun
tion w(x) expressed as an in�nite series:
w(x) = 1 − 4√

π

∞
∑

q=1

x2q+1 (−1)qq2

q!22q(2q + 1)
. (3.25)One 
an 
he
k that it 
orresponds to a Taylor expansion of the result given in [66℄:

w(x) = erf
(x/2) +
2x+ x3

√
4π

e−x
2/4, (3.26)where erf
(z) is the 
omplementary error fun
tion. The approximate result of Ref. [70℄ is 
lose to thisexa
t formula. The series in Eq. (3.25) is rapidly 
onvergent, and if trun
ated at some qmax, 
an be usedin numeri
al 
al
ulations. One sees that the 
uto� is indeed of a Gaussian type, with the varian
e σ2 = 4in agreement with the asymptoti
 behavior of Aq dis
ussed above.These 
al
ulations 
an be easily extended to the 
ase of an arbitrary initial graph. For example, if weassume that at the beginning we have a 
omplete graph with n0 nodes, after repeating all the steps of
al
ulations, we will obtain the following formula for the moments:

Aq =
Γ(1 + n0 − ω)

Γ(n0 + 3/2 − ω + q/2)

[

Γ(4 + q)

2(q + 1)
+
m0(n0)Γ(2 + n0 + q)

Γ(n0 + 2)

]

≈ exp

(

1

2
q ln q +O(q)

)

, (3.27)37
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Figure 3.1: Plots of the 
uto� fun
tion w(x) 
al
ulated from Eq. (3.28) for the BA model without initialattra
tiveness, for the initial graph with n0 = 3 (bla
k lower line) and 5 nodes (bla
k upper line) agreevery well with w(x) obtained from averaged degree distribution for 2 × 104 generated networks of size
N = 104 (gray lines).with ω = n0(3 − n0)/2 and the zero-th moment m0(n0) = (n0 + 1)n0/2 being just the number of linksin the initial graph. This allows us to infer the asymptoti
 behavior of w(x) whi
h is the same as for
n0 = 2. Therefore, the degree distribution for the BA tree model without initial attra
tiveness has alwaysa Gaussian 
uto� whose position s
ales as ∼ N1/2. The full expression for w(x) takes the form:

w(x) = Γ(1 + n0 − ω)

[

1

2
f̃ 1

2 ,n0+
3
2−ω,4,2

(x) +
m0(n0)

Γ(n0 + 2)
f̃ 1

2 ,n0+
3
2−ω,2+n0,1(x)

]

. (3.28)In �gure 3.1 we have plotted w(x) 
al
ulated from Eq. (3.28) together with the results of Monte Carlosimulations for �nite-size networks. One readily sees that w(x) strongly depends on the size of the seedgraph n0. This sensitivity to the initial 
onditions has just been reported in [66℄ as well as in Ref. [71℄where another quantity has been measured.Let us go now to the 
ase of preferential atta
hment kernel k + a0, that is to the model with initialattra
tiveness a0 > −1. From Eq. (2.66) we know that Π∞(k) ∼ k−γ with the exponent γ = 3 + a0.Like we said, the model is equivalent to the growing network with re-dire
tion (GNR model), des
ribedin previous 
hapter, with the 
hoi
e of the parameter r = 1/(a0 +2). In all numeri
al simulations showedin this se
tion the GNR model is used. On the other hand, in analyti
al 
al
ulations we shall followthe pro
edure, whi
h we des
ribe above for the pure BA model. Assuming that we start from the dimer
on�guration, using the re
ursion formula for Nk(N) we get an equation for the moments mq(N) whi
h
an be solved in the form whi
h involves some (yet) unknown 
oe�
ients Bq,q+1:
mq(N) =

1

Γ
(

N − 1 + a0

2+a0

)

(N − 1)

q+1
∑

i=0

Bqi
Γ
(

N + a0+i
2+a0

)

Γ
(

2 + a0+i
2+a0

) . (3.29)For large but �nite N it simpli�es to
mq(N) ≃ N

q+1
2+a0 Aq, (3.30)with Aq = Bq,q+1/Γ

[

2 + a0+q+1
2+a0

]. Therefore, the fun
tion v(k,N) obeys the following s
aling rule:
v(k,N) → Nw

(

k/N
1

2+a0

)

, (3.31)where the fun
tion w(x) has now moments Aq depending on a0. Equation (3.31) indi
ates that the 
uto�s
ales as N1/(γ−1) where γ = 3 + a0 is the exponent in the power law for Π∞(k). This is in agreement38



with the result presented in table 3.1. For given N , the 
uto� de
reases when the exponent γ in
reases.Pra
ti
ally, this implies that the power law in the degree distribution 
an hardly be seen for γ > 4 be
auseeven for large networks with N = 106 nodes the 
uto� 
orresponds to the value of kmax ∼ 100 and thepower-law extends maximally over 1− 2 de
ades in k. This partially explains the fa
t why S-F networkswith γ above 4 are pra
ti
ally never en
ountered [2℄.The moments Aq 
an be found:
Aq = 2

Γ
(

1 + a0

2+a0

)

Γ(5 + 2a0)

[6(q + 2) + a0(13 + 4a0 + 3q)] Γ (4 + 2a0 + q)

(1 + q)Γ
(

5+3a0+q
2+a0

) . (3.32)The equation (3.32) is mu
h more 
ompli
ated than Eq. (3.13) but it redu
es to it for a0 = 0. The leadingterm of Aq is
lnAq ≈

1 + a0

2 + a0
q ln q. (3.33)Comparing this to Eq. (3.15) as it has been done before, one sees that for large x the fun
tion w(x)de
ays like exp [−(x/σ)ρ] with

ρ =
2 + a0

1 + a0
=
γ − 1

γ − 2
. (3.34)This agrees very well with numeri
al results. The 
uto� for γ 6= 3 is no longer Gaussian. For 2 < γ < 4,as often found in real networks, ρ is always greater than 1.5 and therefore the �nite-size 
uto� 
annotbe approximated by a pure exponential de
ay, observed in some networks [2℄. Exponential 
uto�s foundin su
h networks probably have di�erent origin [72℄. The formula for M(z) is still given by Eq. (3.20)with the parameters a, b, . . . expressed through a0. The 
uto� fun
tion w(x) is given by Eq. (3.23). Forinstan
e, for a0 = −1/2 whi
h 
orresponds to γ = 2.5 we get

w(x) =
Γ(2/3)

3

∞
∑

q=0

(−x)q
q!

[

x
−9q

2Γ(1 − 2q/3)
+

2 − 2q

Γ(5/3 − 2q/3)

]

. (3.35)In Fig. 3.2 we plot w(x) for a0 = −1/2, 0 and 1. For numeri
al 
al
ulations all series have been trun
ated.The trun
ation error is less than 10−4 in the plotted area. The results show that the 
urves be
ome more�at when a0 in
reases and agree well with w(x) obtained in simulations of �nite-size networks.The initial graph has a great in�uen
e on the fun
tional form of w(x). We do not 
onsider here thedependen
e on the size n0 of the seed graph, but one 
an show that asymptoti
 properties of the 
uto�fun
tion are insensitive to n0 and therefore for x being su�
iently large, w(x) ∼ exp [−(x/σ)ρ] dependsonly on a0, i. e. only on the exponent γ in the power-law Π(k) ∼ k−γ .So far we have 
onsidered the model with m = 1, restri
ting ourselves to the 
ase when graphs areessentially trees and possible 
y
les 
an only 
ome from the seed graph. The general 
ase m > 1 is mu
hmore 
ompli
ated. Ea
h of m proper links of a newly introdu
ed node has to be 
onne
ted to one of
N preexisting nodes a

ording to the preferential atta
hment rule. However, sin
e multiple links arenot allowed, the nodes to whi
h links have been 
onne
ted on this step have to be ex
luded from theset of nodes available for further linking. Thus, when a new proper link of a node is introdu
ed, theprobabilities of atta
hing it to one of the preexisting nodes are di�erent depending on whether the linkis the �rst, se
ond, et
., of m. The rate equation for Nk(N) 
an still be obtained in this 
ase, but itsstru
ture is very involved. For example, for m = 2 and n0 = 3 (triangle as a seed graph) the full rateequation for Nk(N) reads:

Nk(N + 1) = Nk(N) + δk,2 +
1

4N − 6

[

(k − 1)

(

1 − k − 1

4N − 5 − k
+ SN

)

Nk−1(N)

−k
(

1 − k

4N − 6 − k
+ SN

)

Nk(N)

]

, (3.36)where SN denotes the auxiliary quantity:
SN =

N
∑

k=1

kNk(N)

4N − 6 − k
. (3.37)Due to the presen
e of the SN term, Eq. (3.36) is nonlinear in Nk, and 
ontains k in denominators. Thismakes impossible to apply our method in a straightforward way to the exa
t equation. In this 
ase the39
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Figure 3.2: Plots of w(x) 
al
ulated from Eq. (3.23) for a0 = −0.5, 0 and 1 (solid lines from top tobottom) whi
h 
orrespond to γ = 2.5, 3 and 4, respe
tively. The 
urves be
ome �at with in
reasing a0.The thi
k gray lines are w(x) obtained from averaged degree distribution for 2× 104 generated networksof size N = 104. The tails de
ay as exp(−xρ) with ρ = 3, 2, 3/2, respe
tively, in agreement with numeri
al�ndings.approximations are needed. The equations for m > 2 are even more 
ompli
ated be
ause of in
reasingnumber of possible ways of distributing m links at ea
h time step.We 
an, however, make the following approximation. When the total number of links L is large, theprobability that at ea
h step we pi
k up two or more links pointing onto the same node is small. Whenthe size n0 of the initial graph is mu
h larger than m, this 
ondition is ful�lled from the beginning and weexpe
t that this approximation should work good. Within this approximation, the rate equation takesthe form:
Nk(N + 1) = Nk(N) + δk,m +

k − 1

2(N − ω)
Nk−1(N) − k

2(N − ω)
Nk(N). (3.38)The Kroene
ker delta stands for the addition of one node with m links at ea
h time step. The remainingterms give the probability of preferential atta
hment like in Eq. (3.1). The denominators must give thenormalization ∑k kNk(N) = 2L. Assuming that we start from a 
omplete graph with n0 nodes, we getthe number of links L = m(N − ω) with

ω = n0(2m+ 1 − n0)/(2m). (3.39)The fa
tor m 
oming from 2L in the denominator 
an
els out with m 
oming from m possibilities of
hoosing links at ea
h step. The 
hoi
e of the same name �ω� above, as in Eq. (3.28) is not a

idental.In fa
t, the 
uto� fun
tion w(x) is now given by a very similar formula:
w(x) = Γ(1 + n0 − ω)

[

1

Γ(m+ 2)
f̃ 1

2 ,n0+
3
2−ω,3+m,2

(x) +
m0(n0)

Γ(n0 + 2)
f̃ 1

2 ,n0+ 3
2−ω,2+n0,1(x)

]

, (3.40)with m0(n0) = n0(n0 + 1)/(m+ 1), whi
h takes the form of Eq. (3.28) for m = 1. Thus the same s
aling
kmax ∼ N1/2 holds also here.Like before, we expe
t some dependen
e on the initial graph, but as far as the asymptoti
 propertiesof w(x) are 
on
erned the dependen
e should be negligible. Therefore, one should take the simplestpossible initial 
on�guration. The most natural 
hoi
e is the 
omplete graph with n0 = m + 1 be
ausethen Π(k) = 0 for all k < m at ea
h step of the growth pro
ess. However, one should remember thatthe approximation used here works well only for m ≪ n0 be
ause Eq. (3.38) with ω given by Eq. (3.39)approximates reasonably the full rate equation only if m≪ N at ea
h stage of the network growth.In �gure 3.3 we 
ompare our approximate analyti
al solution with Monte Carlo simulations of BAnetworks initiated from 
omplete graphs with di�erent n0. One 
an see a small deviation between the40
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Figure 3.3: The fun
tion w(x) for m = 2 and for n0 = 3, 7, 10 and 15 (
urves from the �attest to themost peaked). The agreement between the analyti
al solution and the results of 
omputer simulations isnot as good as before due to approximate 
hara
ter of the solved equation. The experimental points areobtained for N = 4000. The dip at about x = 1 and the peak at about x = 2 espe
ially pronoun
ed inthe 
ase of larger seed graphs mean that mu
h more nodes with high degrees is present than it would beexpe
ted for the asymptoti
 power-law behavior of Π∞(k).analyti
al and numeri
al 
urves. The largest di�eren
e is for n0 = 3 and the smallest for n0 = 15,
on�rming our earlier 
on
lusion that the approximation is better for larger seed graphs. The asymptoti
form of w(x) ∼ exp(−x2/4) is the same as for growing BA trees, regardless of how many new nodes mwe add per one time step.3.1.3 Numeri
al simulations of equilibrated networksWe have performed extensive numeri
al simulations of various networks to 
ross-
he
k analyti
 resultsfor the s
aling of the 
uto� fun
tion. The results for growing networks have been just presented in theprevious se
tion. As we saw, they were in a very good agreement with theoreti
al predi
tions, and also
onsistent with earlier results presented in table 3.1. Now we shall des
ribe results of the numeri
al
omputation of the 
uto� for equilibrated graphs. We used the Monte Carlo generator des
ribed inSe
tion 2.1.5 and in Ref. [53℄. It performs a weighted random walk in the 
on�guration spa
e of the
anoni
al ensemble. Ea
h elementary step of the random walk is done using the T-rewiring and a

eptedwith the Metropolis probability. We simulated three ensembles: equilibrated trees, equilibrated simplegraphs, and equilibrated degenerated graphs. In all the 
ases we used basi
ally the same algorithm ex
eptthat in the �rst one we reje
ted rewirings violating the tree stru
ture by introdu
ing a 
y
le; in the se
ondwe reje
ted moves leading to multiple- or self-
onne
tions. This resulted in lowering the a

eptan
e rateand algorithm e�
ien
y, espe
ially for tree graphs, in whi
h 
ase we had to extend the simulation timeappropriately.In simulation of trees, as an initial 
on�guration we 
hosen a GNR network with a0 = γ − 3 adjustedto have the desired value of the exponent γ in the tail of the node degree distribution. The asymptoti
degree distribution, given by Eq. (2.66), has 〈k〉 = 2 for in�nite GNR trees as it should2. In order topreserve this distribution in the pro
ess of homogenization we had to set the ratio-weight fun
tion w(k)a

ording to Eqs. (2.49) and (2.59):
w(k) =

k(k + a0)

k + 3 + 2a0
. (3.41)This 
hoi
e ensures that the mean value of the degree distribution stays at its �
riti
al� value equal to

k̄ = 2L/N ≈ 2 for trees. For densities of links below the 
riti
al one, one would observe an exponential2Sin
e L = N − 1, the average degree is in fa
t 2 − 2/N but it 
onverges fast to the asymptoti
 result.41



suppression of the degree distribution for large k, and for the average degree above two, the s
ale-freebehavior would be disturbed by the surplus of highly 
onne
ted nodes, or even by a 
ondensation of linksat some singular node. We simulated ensembles for three exponents γ = 2.5, 3 and 3.5 for whi
h thes
aling exponent α should be 0.667, 0.5 and 0.4, respe
tively. For ea
h of them we took trees of twodi�erent sizes N = 1000 and N = 2000, and for ea
h we made between four and six independent runsin order to estimate errors by means of the standard Ja
kknife method [73℄. We measured the degreedistribution as well as a 
umulative degree distribution (
.d.d.) de�ned as
P (k) =

∞
∑

q=k

Π(q). (3.42)Be
ause the degree distribution has the power-law tail Π(k) ∼ k−γ , the 
orresponding 
umulative distri-bution behaves as P (k) ∼ k−γ+1. Any 
uto� e�e
ts should be 
learly visible also in P (k). The advantageof using the 
umulative distribution is that one does not need to make binning to redu
e statisti
al errors.One makes a rank plot instead. From Eq. (2.66) we get the following formula for theoreti
al P (k) forin�nite graphs:
P∞(k) =

Γ(3 + 2a0)Γ(k + a0)

Γ(1 + a0)Γ(2 + 2a0 + k)
. (3.43)For any large but �nite network we expe
t, similarly as in se
tion 3.1.2, some 
uto� so that P (k) ≈

P∞(k)V (k/Nα). Here V (x) would be some universal fun
tion. If it is so, we should observe a 
ollapse of
urves Pexp(x)/P∞(x) plotted in the res
aled variable x = k/Nα. In �gure 3.4 we see that su
h a 
ollapseindeed takes pla
e for γ = 3 and 2.5. This means that theoreti
al values of α (see table 3.1) agree verywell with the experiment. However, for γ = 3.5 the 
ollapse is mu
h better for α = 0.55 ± 0.03 than forthe theoreti
ally predi
ted value 0.4. This means that there are more nodes with high degrees than itis expe
ted. In [65℄ it has been suggested, that in the 
ase of disassortative networks like equilibratedtrees presented here, the 
uto� might be higher than 1/(γ − 1). On the other hand, the assortativity
oe�
ient A in
reases3 with γ so the assortativity is bigger for γ = 3.5 than for 2.5 where we observe aperfe
t agreement. So it is not 
lear whether indeed the argument of Ref. [65℄ is entirely 
orre
t.Let us now dis
uss equilibrated simple graphs. We will generate weighted graphs with the degreedistribution (2.66). In our Monte Carlo generator (see Se
t. 2.1.5) we have to set the weight fromEq. (2.59) to
w(k) =

(k + 1)(k + a0)

k + 3 + 2a0
, (3.44)in order to get the stationary distribution given by Eq. (2.66) in the limit of N → ∞. As before, we mustkeep the average degree equal to 2, whi
h is the mean value of the distribution (2.66). As the initial graphwe have 
hosen again a GNR tree, be
ause from the very beginning it has the 
orre
t degree distributionequal to that produ
ed by the graph rewiring pro
ess in the 
ourse of thermalization. The �nal resultsare the same when one begins with any random graph with N = L but the 
onvergen
e to the asymptoti
distribution might be in this 
ase mu
h slower.We simulated four ensembles: with γ = 3, 3.5, 2.5 and 2.1, ea
h of them for three sizes N = 2000, 4000and 8000. The a

eptan
e rate of the algorithm was better than in 
ase of trees and thus we were ableto examine larger systems. Before starting simulations we suspe
ted that the data would 
ollapse to as
aling fun
tion V (x) better than for trees, be
ause of less stru
tural 
onstraints. Surprisingly, as we seein �gure 3.5, the 
ollapse is worse and moreover, it takes pla
e for di�erent values of α than those givein table 3.1 and predi
ted in either [63℄ or [64℄. In parti
ular, for γ = 3 where one expe
ts α = 1/2, wemeasured 0.38± 0.02. For the 
ase γ = 3.5 we found that the measured value 0.40± 0.02 agrees with [64℄whi
h predi
ts α = 0.4, while for γ = 2.5, α = 0.35 ± 0.03 is 
loser to the result of [63℄ whi
h predi
ts

α = 0.4. For γ = 2.1 (not shown in the pi
ture) we found α = 0.33 ± 0.01, whi
h also agrees quitewell with [63℄. To summarize, the numeri
al results presented in this se
tion do not give a 
on
lusiveeviden
e whi
h of the theoreti
al predi
tions, [63℄ or [64℄, for the s
aling exponent α of the 
uto� is better.A
tually, for γ > 3 the numeri
al value is 
loser to that of [64℄ while for 2 < γ < 3 to that of [63℄. Oneshould, however, keep in mind that the numeri
al results are based on relatively small systems. For su
hnetworks, subleading �nite-size 
orre
tions may be important and may interfere with the leading s
alingbehavior kmax ∼ Nα. The question how α depends on γ for equilibrated S-F networks remains open.Let us now dis
uss Monte Carlo results for pseudographs. As before we simulated ensembles for
γ = 2.5, 3 and 3.5, for N = 1000, 2000, 4000. The weight fun
tion w(k) is the same as in Eq. (3.44).3It 
an be shown that for the s
ale-free degree distribution (2.66), Trǫ grows with in
reasing γ and so grows the 
oe�
ient
A. 42
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In �gure 3.6 we show the fun
tion V (x) obtained from res
aled numeri
al data: x = k/Nα. The exponent
α has been 
hosen in order to obtain the best overlap of the data for di�erent N . We see that forpseudographs the numeri
al results are 
onsistent with theoreti
al predi
tions. In table 3.1 we have
α = 1/2 for γ = 3, 3.5 and 2/3 for γ = 2.5, while the 
orresponding exponents determined experimentallyare 0.55 ± 0.03, 0.51 ± 0.02 and 0.66 ± 0.02, respe
tively. For γ = 3 the experimental value deviates abit from the theoreti
al ones, while for the two remaining values of γ the agreement is perfe
t. It is notsurprising that experimental results for pseudographs exhibit the best agreement with theory, sin
e theyhave almost no 
onstraints on the stru
ture of graph. In fa
t, they may be e�e
tively redu
ed to theballs-in-boxes model [36℄, whi
h shall be dis
ussed in next se
tion.3.2 Dynami
s on networksSo far we have dis
ussed networks as purely geometri
al obje
ts. However, many networks representnot only relationships between nodes but often they are viewed as a ba
kbone of the 
omplex system onwhi
h signals, matter, or other degrees of freedom 
an propagate. For example, networks are a 
onvenientway of thinking about �ows, transport, signal propagation, and information spreading between di�erentobje
ts. In other words, one is often interested in dynami
s of some degrees of freedom whi
h resideon the network and undergo some dynami
al evolution transmitted by the stru
ture of the network. Agood example is the air transportation network with airports as nodes and �ight 
onne
tions as links.The dynami
al variable in this 
ase is the number of passengers or goods. The �ow is proportionalto the intensity of the air tra�
 between airports. Another example is the voter model [74, 75℄ whi
his used to mimi
 an opinion formation among di�erent individuals. The quantity whi
h is this 
ase�transmitted� on the network of a
quaintan
e relations is the opinion. The distribution of opinions onthe network is represented by dis
rete variables de�ned on nodes. In the simplest version, nodes 
hangetheir state by 
opying the state of a randomly 
hosen neighbor. There are many other examples: thetra�
 of data pa
kets in the Internet [76℄, epidemi
 spreading (�ill� nodes infe
t other nodes) [77, 78, 79℄,syn
hronization of 
oupled os
illators [80, 81, 82℄, et
.It is worth mentioning, that the observed dynami
al properties in models de�ned on s
ale-free networksare often quite di�erent from those on regular latti
es. It is so be
ause S-F networks have two importantproperties mentioned at the beginning of this thesis: the distan
e between every pair of nodes is relativelysmall, and the power law in the degree distribution leads to the emergen
e of nodes with a high numberof 
onne
tions. This inhomogeneity in the degree distribution seems to play a very important role. Inthis 
hapter we shall examine the in�uen
e of the node degree inhomogeneity on the dynami
s of systemsde�ned on networks. We shall use a very simple model, 
alled zero-range pro
ess. This model is easy tohandle analyti
ally. For example, one 
an show that its steady state has a simple fa
torized form whi
hmakes it possible to solve the stati
s of the model analyti
ally. Despite its simpli
ity, the model exhibitsa very interesting behavior, e.g. it has a phase transition between 
ondensed and un
ondensed state.In the �rst subse
tion we shall de�ne a zero-range pro
ess and review its basi
 properties. In parti
ular,we shall dis
uss the 
riterion for the 
ondensation on homogeneous and inhomogeneous networks. Next,we shall dis
uss in details a derivation of most important results in the statisti
al ensemble approa
h.In subse
tion 3 we shall study the dynami
s of the 
ondensate. We shall des
ribe how the 
ondensate isformed from a diluted state and how it behaves on
e it is formed. For example, we shall ask how mu
htime the 
ondensate needs to disappear from the node it o

upies. In the last subse
tion we shall showhow to obtain s
ale-free �u
tuations in the inhomogeneous system.3.2.1 Zero-range pro
essThe zero-range pro
ess (ZRP) is a parti
ularly simple di�usive system whi
h des
ribes dynami
s ofballs (parti
les) on a given network. The balls hop from site to site on the network and the hopping ratedepends only on the number of balls at that site from whi
h the ball hops. Despite its simpli
ity the modelexhibits many interesting properties like phase separation, phase transition, long-range �u
tuations andspontaneous symmetry breaking, observed in more 
ompli
ated systems with mass transport. Therefore,it has attra
ted a great attention re
ently [83, 84, 85, 86, 87, 88℄. In 
omparison to more realisti
 models,it has one advantage: the steady state of the system is known exa
tly and it assumes a very simple,fa
torized form. It is worth to mention here that stati
 properties of the model are the same as in theballs-in-boxes model [36, 89℄ developed earlier and su

essfully applied to explain su
h phenomena asfor instan
e wealth 
ondensation [90℄, emergen
e of the Hagedorn �reball in hadron physi
s [91, 92℄ ora 
ollapse of random geometry in the quantum gravity [89, 93℄. Although the stati
s of the zero-range45



pro
ess is relatively well known, its dynami
s, in 
ase when it takes pla
e in an inhomogeneous system,has not been yet so thoroughly studied.We shall 
onsider a zero-range pro
ess on a 
onne
ted simple graph with N nodes and L links. Ea
hnode i of the graph is o

upied by mi ≥ 0 identi
al balls and the total number of balls is �xed and equalto M . The system undergoes the following dynami
s: balls hop from non-empty nodes with rate u(m),whi
h depends only on the node o

upation number m, to one of the nearest neighbors, 
hosen withequal probability. The fun
tion u(m) is any non-negative fun
tion de�ned for m = 0, 1, 2, . . . . For a nodewhi
h has k neighbors, the hopping rate per link emerging from this node is equal to u(m)/k sin
e ea
hlink is 
hosen with equal probability 1/k.It is easy to implement this type of dynami
s on a 
omputer. At ea
h time step we pi
k N nodes atrandom. From ea
h of these nodes, o

upied by at least one ball, a ball is moved to a node 
hosen withequal probability from its ki nearest neighbors. The move is a

epted with probability proportional to
u(mi), otherwise it is dis
arded. The jumping rate u(mi) must be properly normalized to be less than 1.With su
h a de�nition, one unit of time 
orresponds to one sweep of the system that is to N attempts ofmoving a ball.The ZRP has a steady state. Following Ref. [94℄, we shall present here a short derivation for anarbitrary network having adja
en
y matrix Aij . We are interested in the probability P (m1, . . . ,mN)of �nding the system in a parti
ular state with given number of balls on ea
h site. In the stationarystate, this probability must be 
onstant, as a result of balan
e between hopping into and out of the given
on�guration:

u(mi)P (m1, . . . ,mN ) =





∑

j 6=i

Aij
1

kj
u(mj + 1)P (. . . ,mj + 1, . . . ,mi − 1, . . . )



 , (3.45)for ea
h node i. The sum over j in
ludes only neighbors of node i, ea
h of them gives the 
ontribution
∝ 1/kj sin
e it has kj − 1 other neighbors than i. Assume now that P (m1, . . . ,mN ) fa
torizes into somefun
tions f̃i(mi):

P (m1, . . . ,mN ) =
1

Z(N,M)

N
∏

i=1

f̃i(mi), (3.46)where Z(N,M) is an appropriate normalization. Inserting this formula into Eq. (3.45) we have:
∑

j 6=i

Aij

[

1

kj
u(mj + 1)f̃j(mj + 1)f̃i(mi − 1) − 1

ki
u(mi)f̃i(mi)f̃j(mj)

]

= 0. (3.47)This equation is ful�lled only if ea
h term of the sum over j vanishes separately:
1

kj
u(mj + 1)

f̃j(mj + 1)

f̃j(mj)
=

1

ki
u(mi)

f̃i(mi)

f̃i(mi − 1)
. (3.48)The left-hand side depends on mj while the right-hand side on mi. To be equal for any mi and mj theyhave to be a 
onstant fun
tion, independent of m. Without loss of generality we 
an set it equal to one.We get:

f̃i(mi) =
ki

u(mi)
f̃i(mi − 1). (3.49)Iterating this equation we 
ome to the formula for f̃i(m):

f̃i(m) = kmi

i f(mi), (3.50)where we have introdu
ed the fun
tion f(m) whi
h is independent of ki and reads:
f(m) =

m
∏

k=1

1

u(k)
, f(0) = 1. (3.51)The splitting into a site-dependent and a site-independent part is 
onvenient when one 
onsiders regulargraphs having all degrees ki the same. The partition fun
tion Z(N,M, {ki}) being a sum over all states

m1, . . . ,mN has the form:
Z(N,M, {ki}) =

M
∑

m1=0

· · ·
M
∑

mN=0

δP

N
i=1mi,M

N
∏

i=1

f(mi)k
mi

i . (3.52)46



Here the Krone
ker delta gives the 
onservation law of the total number of balls. For 
onvenien
e we shalldenote Z(N,M, {ki}) of the original graph in short by Z(N,M), skipping the dependen
e on the sequen
eof degrees {ki}. The partition fun
tion (3.52) en
odes the whole information about stati
 properties of thesystem. It depends only on the node degrees and a detailed stru
ture of the graph has no meaning. As weshall see, also dynami
al quantities, like the typi
al life-time of the 
ondensate, are mainly 
hara
terizedonly by the degree sequen
e {ki}, if the graph has a small diameter.In order to study stati
 and dynami
 behavior of the ZRP it is 
onvenient to de�ne an e�e
tivedistribution of balls πi(m), that is the probability that site i is o

upied by m balls, averaged over all
on�gurations: πi(m) = 〈δm,mi
〉. It 
an be 
al
ulated as follows:

πi(mi) =
∑

m1

· · ·
∑

mi−1

∑

mi+1

· · ·
∑

mN

P (m1, . . . ,mN ) δP

N
i=1mi,M

=
Zi(N − 1,M −mi)

Z(N,M)
kmi

i f(mi), (3.53)where Zi(N − 1,M −mi) denotes the partition fun
tion for M −mi balls o

upying a graph 
onsistingof N − 1 nodes with degrees {k1, . . . , ki−1, ki+1, . . . , kN}. It is important not to think about Zi as ofpartition fun
tion of the original graph with the ith node removed, but rather as of a new graph built ofthe old sequen
e of degrees without ki. We de�ne also the mean o

upation probability as the averageover all nodes:
π(m) = (1/N)

∑

i

πi(m). (3.54)It is worth mentioning that for graph with k1 = · · · = kN ≡ k = const, that is for a k-regular graph, theabove formulas redu
e to that known from the balls-in-boxes model and the distribution πi(m) = π(m)is the same for all nodes. We will see below that sometimes π(m) is indeed equal to f(m). Therefore weshall 
all f(m) �bare� o

upation probability.The partition fun
tion 
an be 
al
ulated re
ursively:
Z(N,M, {k1, . . . , kN}) =

M
∑

mN=0

f̃N (mN )
∑

m1,...,mN−1

δPN−1
i=1 mi,M−mN

N−1
∏

i=1

f̃i(mi)

=

M
∑

mN=0

f̃N(mN )ZN (N − 1,M −mN) =

M
∑

m=0

f̃N (m)Z(N − 1,M −m, {k1, . . . , kN−1}). (3.55)For N = 1 the partition fun
tion reads simply Z(1,M, k1) = f̃1(M). The formula (3.55) 
an serve fornumeri
al 
al
ulations of the partition fun
tion for systems of order few hundreds nodes or more. Usingit together with Eq. (3.53) we 
an 
ompute the distribution of balls in a more e�
ient way that by MonteCarlo simulations.The knowledge of the partition fun
tion allows one to 
al
ulate 
orrelation fun
tions of higher order.For small systems we 
an 
al
ulate Z(N,M) exa
tly from Eq. (3.55), for large systems it is better to usethe de�nition (3.53) whi
h allows for some approximations. In the thermodynami
al limit of N → ∞it is therefore 
onvenient to introdu
e the density of balls ρ ≡ M/N and to study the limit of �xed ρwhile in
reasing N . As we shall see below, for large systems, i.e. for N,M large, ρ be
omes a relevantparameter of the model.The dynami
al and stati
 properties of the ZRP depend strongly on the fun
tion u(m) and the degreesequen
e {ki}. For the model des
ribed here we 
an distinguish two 
lasses of systems. From now on,by a homogeneous system4 we shall understand the network with all ki's being equal. It is true forinstan
e for a 
omplete graph, one-dimensional 
losed 
hain or a k-regular random graph. In 
ontrast,an inhomogeneous system has a non-trivial degree sequen
e, with at least one degree di�erent fromothers. This is the 
ase for random graphs, star graphs and s
ale-free networks.3.2.2 Condensation in the ZRPThe reason why zero-range pro
esses are so interesting is that under some 
onditions one observes aphenomenon of �
ondensation� in the steady state. In this phenomenon, a single node takes a �nitefra
tion of all balls present in the system. The e�e
t does not disappear in the thermodynami
 limit.The 
ondensation 
an be observed in the o

upation distribution π(m) as a separated peak, whose positionmoves almost linearly with the system size. Unlike the Bose-Einstein 
ondensation whi
h takes pla
e in4We mentioned before, that equilibrated networks were sometimes 
alled �homogeneous networks�. In this paper, however,we shall always use the term �homogeneous� while speaking about networks with equal degrees.47



the momentum spa
e, the above e�e
t appears in the real spa
e. Therefore it mimi
s su
h pro
esses likethe mass transport [83℄, 
ondensation of links in 
omplex networks [35, 84℄ or phase separation [95, 96℄.The 
ondition for the emergen
e of the 
ondensation in homogeneous systems is well known [67, 94℄.On the other hand, until now only a few inhomogeneous systems have been examined [97, 98, 99℄. In thisse
tion we summarize some results and dis
uss methods of derivations for the existen
e of 
ondensate. Webegin with homogeneous systems and then we present our re
ent results for graphs with inhomogeneousdegrees.Homogeneous systems. For k-regular 
onne
ted simple graphs, whi
h we shall 
onsider in thisse
tion, the stati
 properties of the steady state depend only of the hopping rate u(m), the number ofnodes N and the number of ballsM , and are independent of the details of graph topology. The partitionfun
tion assumes the form:
Z(N,M) =

M
∑

m1=0

· · ·
M
∑

mN=0

δP

N
i=1mi,M

N
∏

i=1

f(mi). (3.56)The fa
tor kM has been dropped sin
e it is 
onstant for given k and M . Similarly, for the distribution ofballs we have
π(m) =

Z(N − 1,M −m)

Z(N,M)
f(m). (3.57)From the de�nition (3.56) of Z(N,M) we 
an obtain another formula for the distribution of balls:

π(m) = N−1f(m)
∂ lnZ(N,M)

∂f(m)
, (3.58)and hen
e π(m) is proportional to the derivative of the �free energy� lnZ and the bare o

upation prob-ability f(m). Noti
e a similarity between this formula and that of Eq. (2.35) for the degree distributionof equilibrated graphs. As we will see, indeed, there is a 
lose relation of the ZRP and equilibratedpseudographs.Now we shall study, how the behavior of u(m) in�uen
es on the emergen
e of 
ondensation. FromEq. (3.49) we see that for homogeneous system there is a 
orresponden
e between the hop rate u(m) andthe fun
tion f(m):

u(m) = f(m− 1)/f(m) ⇐⇒ f(m) = f(m− 1)/u(m), (3.59)and in many 
ases f(m) is more 
onvenient, so we will sti
k to it below. Using the integral representationof Krone
ker's delta we 
an rewrite the partition fun
tion as
Z(N,M) =

∮

dz

2πi
z−M−1 [F (z)]

N
, (3.60)where F (z) is an in�nite series with 
oe�
ients given by f(m):

F (z) =

∞
∑

m=0

f(m)zm. (3.61)Denote the radius of 
onvergen
e of this series by r (�nite or in�nite). The partition fun
tion (3.60) hasthe same form as the p.f. (2.31) for pseudographs, up to a fa
tor depending only on N,L. Therefore,equilibrated pseudographs 
an be mapped onto a homogeneous system of balls in boxes with M = 2L.The degree distribution Π(k) is then equivalent to the ball distribution π(m). Therefore, many resultspresented below apply also to pseudographs from Se
. 2.1.4. In the thermodynami
al limit, the integral(3.60) 
an be rewritten as
Z(N,M) ≈

∮

dz

2πi
exp [−N (ρ ln z − lnF (z))] , (3.62)and 
an be done using the saddle-point method:

Z(N,M) ≈ 1
√

2πNG′′(z0)

[F (z0)]
N

zM+1
0

, (3.63)48



where G(z) = −ρ ln z + lnF (z) and the saddle point z0 is determined by the 
ondition G′(z0) = 0,analogously to the 
ase of pseudographs:
ρ = z0

F ′(z0)

F (z0)
. (3.64)The saddle point solution (3.63) holds as long as the Eq. (3.64) has a real solution for z0. If not, theformula (3.63) 
annot be trusted and in fa
t, as we will see, it breaks down in the 
ondensed state. First,let us 
onsider a situation when Eq. (3.63) has a real solution for z0. In this 
ase the leading term in thefree energy lnZ is given by G(z0). Di�erentiating this with respe
t to f(m) we obtain the distributionof balls:

π(m) = f(m)
zm0
F (z0)

. (3.65)Hen
e, if z0 = 1, π(m) ∝ f(m) whi
h explains the name �bare o

upation fun
tion� for f(m). One 
andire
tly see from the de�nition that F (z) is an in
reasing fun
tion of z. Similarly one 
an see that theright-hand side of Eq. (3.64) in
reases monotoni
ally with z0 as long as z0 is smaller than the radius of
onvergen
e r. It means that z0 in
reases when the density ρ in
reases. If the series (3.61) is 
onvergenton the whole 
omplex plane (r → ∞), the saddle point solution for π(m) is valid for any density ρ. Thishappens only when f(m + 1)/f(m) → 0 for m → ∞, whi
h 
orresponds to u(m) → ∞. In turn, thismeans that there exists an e�e
tive repulsive for
e between balls preventing them from o

upying a singlesite. So in this 
ase balls tend to distribute uniformly on the whole graph, regardless of the density ofballs ρ. Consider now u(m) ∼ mδ for an arbitrary δ > 0. Then f(m) is given by
f(m) ∝ 1

(m!)δ
, (3.66)and it is 
learly seen from Eq. (3.65) that the distribution of balls falls faster than exponentially.On the other hand, it is possible to 
hoose f(m) so that F (z) has a �nite radius of 
onvergen
e. Thissituation happens when u(m) tends to a 
onstant for m → ∞. Be
ause multiplying u(m) by a 
onstantfa
tor simply 
orresponds to res
aling the time axis, without loss of generality one 
an set u(m) → 1 inthe limit of large m. To be more spe
i�
, let us 
onsider the 
ase u(m) = 1 + b

m , for whi
h we �nd thefollowing formula for f(m) [100℄:
f(m) =

Γ(b+ 1)m!

Γ(b +m+ 1)
∼= Γ(b + 1)

mb
, (3.67)whi
h falls like a power of m for large m. In this 
ase the series F (z) has a �nite radius r = 1. Wemust 
onsider now two 
ases: b ≤ 2 and b > 2. For b ≤ 2 the derivative F ′(z) goes to in�nity when

z approa
hes one from below. But the ratio F ′(z)/F (z) is �nite for z < 1 and thus the density fromEq. (3.64) 
an be arbitrarily large. The saddle-point approximation works well:
π(m) ∼ zm0

mb
, (3.68)for all values of ρ. We see that in this 
ase the distribution of balls falls o� exponentially for large m.The 
ase b > 2 is di�erent be
ause the ratio F ′(z)/F (z) 
annot grow above some 
riti
al ρc:

ρc =
F ′(1)

F (1)
=

∑

mmf(m)
∑

m f(m)
=

1

b− 2
<∞, (3.69)at whi
h Eq. (3.65) 
ease to hold for real values of z0. But of 
ourse we 
an put as many balls in thesystem as we want, so we 
an in
rease ρ above ρc. What happens then? At the 
riti
al point ρ = ρc, thedistribution of balls is given by

πc(m) =
f(m)

F (1)
∼ Γ(b+ 1)

mb
, (3.70)in the thermodynami
al limit. It has a �nite-size 
uto� for N <∞ whi
h s
ales as [67℄

∼ N1/(b−1) for 2 < b < 3, (3.71)
∼ N1/2 for b > 3, (3.72)exa
tly like for the 
uto� of the degree distribution for degenerated graphs. For ρ > ρc the saddle-pointequation is no longer valid. To understand what happens then, re
all the Bose-Einstein 
ondensation.49



Below the 
riti
al temperature Tc, the fra
tion of parti
les o

upying all energy levels above the groundstate is equal to (T/Tc)
3/2 and it is less than one. The only way to keep the average number of parti
les�xed is to let them go into the lowest energy level whi
h does not 
ontribute to the partition fun
tion,whi
h in the thermodynami
 limit is given by the integral over energy [101℄. The situation is a bit similarto the 
ondensation of balls. Above the 
riti
al density some nodes take the surplus of balls, while therest follows the 
riti
al distribution (3.70). In [102℄ one 
an �nd a 
omplete proof. Here we only re
allthe main arguments [94℄ standing behind it. Assume that the system is deeply in the 
ondensed phase,so that M ≫ Nρc. Denote the ex
ess of parti
les by ∆ = M − ρcN . The 
anoni
al weight of ea
h
on�guration is

P (m1, . . . ,mN ) = f(m1) . . . f(mN ) ∼
(

N
∏

i=1

mi

)−b

. (3.73)Let us estimate the 
ontribution to the partition fun
tion from states where the surplus of balls o

upyone, or two nodes. The 
ontribution to Eq. (3.73) from a single-site 
ondensate is N∆−b. From two-node
ondensation we however have N(N − 1)/2 × (∆/2)−2b. Be
ause ∆ ≈ M = ρN , we get for these twostates:
N1−bρ−b and (N − 1)N1−2b22b−1ρ−2b, (3.74)respe
tively. The se
ond expression disappears faster in the thermodynami
al limit, so we infer that the
ondensate emerges on a single node taking ∆ balls on the average. One 
an 
onsider also higher-nodesstates but they disappear even faster when N → ∞. The 
ondensate is seen as a peak πcond(m−∆) in thedistribution of balls. Sin
e it o

upies only one node, the area under the peak is equal to 1/N . Be
ausein the remaining part of the system there are only ρcN balls, the ba
kground of the distribution π(m) isperfe
tly des
ribed by the saddle-point solution (3.70). The 
omplete expression for π(m) in
luding the
ondensate reads

π(m) ≈ Γ(b+ 1)

mb
+ πcond (m− (M − ρcN)) . (3.75)The form of πcond(m) has been investigated in [67℄ in the model with 
ontinuous massesmi. In the model
onsidered here one 
an take a quasi-
ontinuous limit by letting M → ∞ and res
aling u(m) properly.For 2 < b < 3, the peak is approximated by

πcond(x) ∼= N−b/(b−1)Vb

( x

N1/(b−1)

)

, (3.76)with Vb(z) given by the integral:
Vb(z) =

∫ i∞

−i∞

ds

2πi
e−zs+bs

b−1

, (3.77)whi
h falls as |z|−b for z → −∞ and faster than a Gaussian fun
tion for z → ∞. On the other hand, for
b > 3 in the vi
inity of m = ∆, the peak falls like a Gaussian:

πcond(x) ∼=
1√

2πσ2N3
exp(−x2/2σ2N), (3.78)with σ2 = 〈m2〉 − 〈m〉2 being the varian
e of f(m). In both 
ases, the area under πcond(m) is equal to

1/N .The pi
ture we see now for b > 2 is the following. Below the 
riti
al density the distribution of ballsis given by a power law suppressed additionally by an exponential prefa
tor. At the 
riti
al point thisprefa
tor vanishes and we observe a pure power law, disturbed only by �nite-size e�e
ts. Above the
riti
al point, the 
ondensate emerges at one node 
hosen at random (spontaneous symmetry breaking)from all nodes. The 
ondensate does not need to o

upy this parti
ular site for the whole time. In fa
t,we will see that it performs a kind of random walk through the system, but the pro
ess of melting andrebuilding the 
ondensate is fast in 
omparison to the mean o

upation time. The 
ondensate 
ontains
M − ρcN balls on average.At the end, let us mention the 
ase u(m) → 0 for large m. In this 
ase f(m) in
reases fast with mand the series F (z) has a zero radius of 
onvergen
e. The 
riti
al density ρc is zero and therefore the
ondensation takes pla
e at any density ρ > 0. Balls attra
t so strong that almost all of them fall into asingle node 
hosen at random.In Fig. 3.7 we show π(m) for the three di�erent types of the hop fun
tions f(m) dis
ussed above, forvarious densities ρ. The data are obtained by means of the re
ursion formula (3.55) for the partitionfun
tion and, if possible, 
ompared with the saddle-point solution (3.65).50
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Figure 3.7: Plots of the distribution of balls π(m) for a homogeneous system with various f(m), N , and
ρ. Left: f(m) ∼ 1/m!, N = 40, for ρ = 0.5 (diamonds), 1 (squares) and 2 (
ir
les), no 
ondensation.Middle: f(m) ∼ m−3, ρc = 1 and N = 400. For ρ = 0.5 (the left-most line) there is an exponential
uto�. At the 
riti
al density ρ = ρc the power-law behavior is seen. Above ρc, the surplus of ballsforms the 
ondensate (the right-most line). The 
urves plotted with symbols are obtained by re
urrential
al
ulation of Z(N,M) from Eq. (3.55). Solid lines represent the saddle-point solution (3.65). Right:
f(m) ∼ m!, N = 40, for ρ = 0.5, 1, 2 (from left to right). The 
ondensation is always present.Inhomogeneous systems. Now we fo
us on inhomogeneous networks, whose degrees vary from nodeto node. It turns out [94, 97℄ that the e�e
t of inhomogeneity is so strong that it 
ompletely dominatesover the dependen
e on the hop rate u(m) as long as the latter does not 
hange too fast with m. Forsimpli
ity we 
an assume u(m) = 1 and 
on
entrate only on the e�e
ts 
oming from the inhomogeneityof degrees. Then, the zero-range pro
ess des
ribes a gas of M indistinguishable and non-intera
ting ballsrandomly walking on the given network.The most interesting 
ase of graph with inhomogeneous degrees is of 
ourse the S-F network. Itwas studied in [97, 103℄ but be
ause of its 
ompli
ated stru
ture, only very simple 
al
ulations of thestati
 properties were possible. Here we de
ided to fo
us on the e�e
t 
oming from the node with largestdegree, say k1. To further simply 
onsiderations, we just imagine that the e�e
t 
an be well simulatedby assuming the identity of the remaining degrees. In e�e
t we are led to 
onsider an almost k-regulargraph whi
h has one node of degree k1 bigger than the others whi
h are of degree k2 = · · · = kN = k[99℄. We shall 
all it a single-inhomogeneity graph.To 
onstru
t k-regular graphs and the single-inhomogeneity graph one 
an use various methods. Forinstan
e, one 
an start from a random graph with given number of verti
es and links and rewire it untilall nodes will have desired degrees. Another method of building a k-regular graph is to start from a
omplete graph with k + 1 nodes and build the desired graph su

essively adding nodes and links. Thepro
edure depends on the parity of k. If k is odd, then the number of nodes has to be even be
ausethe number of links L = Nk/2 must be integer, otherwise the graph 
annot be built. At ea
h step wepi
k up k − 1 existing links and split them so that nodes being formerly joined by these links, have now�halves� of them. Then we introdu
e two new nodes i, j joined by a link. Finally, one half of �free ends�of previously split links is joined to the newly added node i, and the other half to j (Fig. 3.8a). In thisway every node has now k neighbors. We repeat this pro
ess until the total number of nodes is equal to
N . In 
ase of even k, the algorithm is similar, but we add only one new node per time step, and split k/2existing links (Fig. 3.8b). Sometimes, as a result of nodes' addition, multiple 
onne
tions might arise. Toprevent them, we dis
ard su
h moves. For k mu
h smaller than N , they are rare and the a

eptan
e ofthe algorithm is almost 100%. We use the stru
ture des
ribed in [53℄ to 
ode the graphs.A single-inhomogeneity graph with one node having degree k1 > k 
an be then obtained from a
k-regular graph with N − 1 nodes by adding to it a new node and joining to it k1 links 
oming fromsplitting k1/2 randomly 
hosen links existing previously. If we get multiple 
onne
tions, we dis
ard thismove and try again.Before we 
al
ulate the partition fun
tion for a single-inhomogeneity graph it is 
onvenient to 
al
ulateit for a k-regular graph. Be
ause we set u(m) = 1 in this se
tion, as mentioned before, hen
e also
f(m) = 1. For a k-regular graph the partition fun
tion Z(N,M) from Eq. (3.52) is

Zreg(N,M) =

M
∑

m1=0

· · ·
M
∑

mN=0

δm1+···+mN ,M k
P

i
mi = kM

1

2πi

∮

dz z−M−1 [F (z)]
N
, (3.79)51
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Figure 3.8: The illustration of the method for generating k-regular graphs, based on addition of newnodes: a) for odd k (here k = 3), b) for even k (here k = 4).where now F (z) reads
F (z) =

M
∑

m=0

zm =
1

1 − z
. (3.80)Using the expansion:

(1 − z)
−N

=

∞
∑

m=0

(−N
m

)

(−z)m =

∞
∑

m=0

(

N +m− 1

m

)

zm, (3.81)and Cau
hy's theorem whi
h sele
ts only the term with m = M , we �nally get an exa
t expression forthe partition fun
tion of a k-regular graph:
Zreg(N,M) = kM

(

N +M − 1

M

)

. (3.82)The partition fun
tion for a graph with one irregular degree k1 > k has the form:
Zinh(N,M) =

M
∑

m1=0

(k1)
m1

M
∑

m2=0

· · ·
M
∑

mN=0

δM,m1+···+mN
km2+···+mN . (3.83)The sum over m2, . . . ,mN is just the partition fun
tion Zreg(N − 1,M − m1) from Eq. (3.82). After
hanging the variable from m1 to j = M −m1, the formula (3.83) 
an be rewritten as

Zinh(N,M) = kM1

M
∑

j=0

αj
(

N + j − 2

j

)

, (3.84)where α = k/k1 des
ribes the level of �inhomogeneity�. Introdu
ing an auxiliary fun
tion
S(α) =

∞
∑

j=0

(−α)j
(−(N − 1)

j

)

=
1

(1 − α)N−1
, (3.85)we obtain the following expression:

Zinh(N,M) = kM1
[

(1 − α)1−N − c(M)
]

, (3.86)where c(M) gives a 
orre
tion for �nite M . It tends to zero for M → ∞:
c(M) =

∞
∑

j=M+1

αj
(

N + j − 2

j

)

. (3.87)This 
orre
tion 
an be however quite large for k1 ≈ k be
ause then α ≈ 1 falls slowly and the binomialterm in
reases with j. We 
an estimate the 
orre
tion by the saddle-point method, repla
ing the sum bythe integral:
c(M) ≈ 1

(N − 2)!

∫ ∞

M

eF (j)dj, (3.88)52
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Figure 3.9: The distribution of balls at the singular node for single-inhomogeneity graphs with k = 4,
N = 20, k1 = 8 (left) and k1 = 16 (right). The total number of balls is M = 20, 40 and 80 from left toright, respe
tively. Points represent numeri
al data while solid lines the solution from Eq. (3.95).where we de�ne a new fun
tion F (j):

F (j) = j lnα+ ln((N + j − 2)!) − ln(j!), (3.89)and use Stirling's formula for fa
torials. We get:
∫ ∞

M

eF (j)dj ≈ eF (j∗)

∫ ∞

M

e
1
2F

′′(j∗)(j−j∗)2dj = eF (j∗)

√ −π
2F ′′(j∗)

erf
((M − j∗)
√

−F ′′(j∗)
)

, (3.90)where erf
(x) denotes the 
omplementary error fun
tion:erf
(x) =
2√
π

∫ ∞

x

e−y
2

dy, (3.91)and j∗ is the point being a solution of the saddle-point equation F ′(j∗) = 0:
j∗ ≈ α(N − 2)

1 − α
. (3.92)Only leading terms in F (j) were taken into a

ount. Colle
ting all together one �nds

c(M) =
α

α(N−2)
1−α

1 − α

((N − 2)/(1 − α))!

(α(N − 2)/(1 − α))!

√

πα(N − 2)

2

1

(N − 2)!
erf
(M(1 − α) − α(N − 2)

√

α(N − 2)

)

. (3.93)The 
omplete partition fun
tion Zinh(N,M) is given by Eq. (3.86) with c(M) 
al
ulated by means ofEq. (3.93). We 
an now 
al
ulate π1(m) that is the distribution of balls at the node with degree k1:
π1(m) =

Zreg(N − 1,M −m)

Zinh(N,M)
km1 , (3.94)where Zreg(N,M) is the partition fun
tion for a k-regular graph. Making use of the formulas (3.82) and(3.86) we get

π1(m) = αM−m

(

M +N −m− 2

M −m

)

[

(1 − α)1−N − c(M)
]−1

. (3.95)In �gure 3.9 we show a 
omparison between the analyti
 solution (3.95) and the one obtained from MonteCarlo simulations. Negle
ting inessential normalization, the equation (3.95) has the following asymptoti
behavior:
π1(m) ∼ exp(G(m)), (3.96)where

G(m) = −m lnα+

(

M +N −m− 3

2

)

ln(M +N −m− 2) −
(

M −m+
1

2

)

ln(M −m). (3.97)53



Condensation takes pla
e when G(m) has a maximum for positive m = m∗. Taking the derivative ofEq. (3.97) and negle
ting terms of order 1/M2 in the 
orresponding equation G′(m∗) = 0 we �nd
m∗ = M − α

1 − α
(N − 2). (3.98)Let us 
al
ulate the mean number of balls at the �rst node:

〈m1〉 =

M
∑

m=0

π1(m)m = M −
M
∑

j=0

π1(M − j)j. (3.99)In the large M limit, the sum over j 
an be 
al
ulated exa
tly:
M −

∑∞
j=0 j(−α)j

(

−(N−1)
j

)

∑∞
j=0(−α)j

(

−(N−1)
j

) = M − α
d lnS(α)

dα
= M − α

1 − α
(N − 1) ≈ m∗. (3.100)The 
ondensation o

urs when an extensive number of balls is on the singular node. This happens when

m∗ > 0 or equivalently when 〈m1〉 > 0. Therefore, the 
riti
al density in the limit N,M → ∞ with �xeddensity ρ = M/N is
ρc =

α

1 − α
. (3.101)The 
ondensation is possible only for the density ρ > ρc, exa
tly like in the Single Defe
t Site model[94℄. The 
riti
al density de
reases with de
reasing ratio α = k/k1 or, equivalently, with in
reasinginhomogeneity k1/k. The site, whi
h 
ontains the 
ondensate, has N(ρ − ρc) + ρc balls on average, asfollows from Eq. (3.100). It is also easy to �nd that the distribution of balls πi(m) at any regular nodewith degree k falls exponentially

πi(m) ∝
(

k

k1

)m

= αm, (3.102)with α < 1. Thus the 
ondensation never appears on a regular node. When the system is in the 
ondensedphase, the mean o

upation of su
h a node is equal to ρc independently on the total number of balls inthe system.Let us 
onsider also a spe
ial example of a single-inhomogeneity graph 
alled a star graph, whi
h hasone node of degree k1 = N − 1 and N − 1 nodes of degree k = 1. Be
ause k1 in
reases when the systemgrows, the parameter α goes to zero as 1/N . The 
riti
al density ρc → 0 in the thermodynami
al limit.Thus on a star graph the 
ondensation appears for any �nite density ρ > 0. We 
an 
al
ulate the varian
eof m1 whi
h is a measure of �u
tuations. Introdu
ing µ ≡ − lnα we have
〈

(m1 − 〈m1〉)2
〉

= −d2 lnS(e−µ)

dµ2
, (3.103)and inserting µ = ln(N − 1) for the star graph we get (N−1

N−2

)2 whi
h tends to one when N → ∞.Therefore, for almost all time the 
ondensate has all balls but one, the mean value 〈m1〉 ≈ M − 1 as itfollows from Eq. (3.100), and �u
tuations are small. The o

upation of other sites must be thus 
lose tozero.3.2.3 Dynami
s of the 
ondensateOne 
an address two natural questions while studying the dynami
s of the 
ondensate: i) how is it pro-du
ed from a uniform distribution of balls, and, ii) how mu
h time does it take to melt the 
ondensate andrebuilt it at another site? The answer to these questions is di�erent for homogeneous and inhomogeneoussystems. Moreover, in both 
ases the dynami
s depends on the stru
ture of network, not only on degrees.For instan
e, one 
an imagine that there is a bottlene
k, e.g. a single link joining two larger parts ofthe network. The transport of balls on su
h graph will be di�erent from the 
ase when these two partsare strongly inter
onne
ted. As we will see, however, the stru
ture of the network is not so important asone 
ould think, and 
hara
teristi
 time s
ales are determined mainly by the size of the system and its(in)homogeneity.The emergen
e of the 
ondensate from a state where all nodes have approximately equal o

upationnumbers has been investigated for homogeneous systems [94℄, [100℄, [102℄. The pro
ess 
an be dividedinto two stages. First, the surplus of balls ∆ a

umulates at a �nite number of nodes. When this happens,54



20 40 60 80 100

10000

1e+05

PSfrag repla
ements
N

〈τ
〉

Figure 3.10: Time s
ales for 
oarsening dynami
s of the 
ondensate on various homogeneous networks. Innumeri
al simulations we measure the average time 〈τ〉 after whi
h the maximal number of balls ex
eeds
∆ = M −ρcN at some node. The system starts from a uniform distribution of balls and the simulation isstopped when mnmax ≥ ∆. The time τ is 
olle
ted and the pro
edure is repeated. At the end we 
al
ulate
〈τ〉. Repeating this a few times we estimate errors. Cir
les: 
omplete graph (D > 2), squares: 4-regularrandom graph (D > 2), diamonds: 2d periodi
 latti
e (D = 2), triangles: one-dimensional 
losed 
hain(D = 1). Lines are asymptoti
 solutions from Eq. (3.104) with proportionality 
oe�
ient �tted to data.In all 
ases M = 4N and b = 4, hen
e the density ρ≫ ρc = 1/2.small 
ondensates ex
hange parti
les through the nearly-uniform ba
kground. This results in 
oarseningof many 
ondensates whi
h eventually form a single one with a larger number of balls. This pro
ess isvery slow. Assuming the jumping rate in the form u(m) = 1+b/m and that we are in the 
ondensed phase
ρ > ρc, the mean 
ondensate size grows as ∆(t/τ)δ, where the 
hara
teristi
 time s
ale τ for 
oarseningdynami
s has been estimated as

τ ∼







N3 for D = 1,
N2 lnN for D = 2,
N2 for D > 2, (3.104)and the exponent δ is inversely proportional to the power of N in the expressions above . Here D is thedimension of the network, e. g. D = 1 for a 
losed 
hain, D = 2 for a two dimensional latti
e and D = ∞for a 
omplete graph. In �gure 3.10 we present the 
omparison of these asymptoti
 formulas to 
omputersimulations.Contrary to the 
oarsening dynami
s, studies on the dynami
s of an existing 
ondensate in homoge-neous systems are rare [100℄. One 
an ask what is the typi
al life-time of the 
ondensate, that is howmu
h time it takes before it disappears from one site and rebuilds at another site. Let nmax be theposition of the node with maximal number of balls. In �gure 3.11 we plot nmax as a fun
tion of time, fordi�erent densities ρ, for a regular graph. It is 
learly seen that the 
hara
teristi
 time between jumps ismu
h larger in the 
ondensed phase. This means that the 
ondensate, on
e formed, spends a lot of timewithout any move and then suddenly jumps to another node. In [100℄ authors investigated this pro
esson a 
omplete graph. Using a Markovian ansatz that the number of balls on the 
ondensed site variesslowly in 
omparison to other mi's one 
an re
ast the original problem into a biased di�usive motion on aone-dimensional interval. The authors showed that average 
rossing time, i. e. the time between meltingthe 
ondensate and rebuilding it at another site, 
an be approximated by the formula

T̄ ∝ (ρ− ρc)
b+1N b, (3.105)for b > 1. Thus for �xed size of graph and far above ρc, T̄ grows like a (b + 1)th power of the density ofballs. For the �xed density, T̄ grows with N as ∼ N b. This formula holds only for quite large systemsand therefore it is hard to verify in Monte Carlo simulations. In �gure 3.12 we see that for small systemsthe power-law dependen
e is rather on M than on (ρ− ρc) as it would stem from Eq. (3.105).Let us dis
uss now inhomogeneous systems. Although the emergen
e of the 
ondensate in zero-range pro
esses has been extensively studied, not mu
h is known about their dynami
s. The 
oarseningdynami
s has been examined numeri
ally for s
ale-free networks in Ref. [97℄, where the jumping rate wastaken to be u(m) ∝ mδ with δ ≥ 0. It was observed that the dynami
s is hierar
hi
al. First, balls onthe sub-network of small degrees are equilibrated, then nodes with higher degrees are equilibrated, and55
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tFigure 3.11: From left to the right: position of the node nmax with maximal number of balls as a fun
tionof time, for di�erent densities ρ = 0.5 (below ρc = 1), ρ = 1.5 and far in the 
ondensed phase ρ = 2.5.The network is a 4-regular graph with N = 20 nodes and the hop rate u(m) ∝ 1+3/m. In the 
ondensedphase, the 
ondensate o

upies a single site for a long time and then moves to another site, thus jumpsin nmax o

ur seldom.�nally the hubs - the nodes with highest degrees. The global stationary state is rea
hed with the time
τ ∼ Nz , where

z =

{

1 + α− δ for trees,
1 − δ for network with loops, (3.106)and α is the exponent from the 
uto� s
aling law kmax ∼ Nα. Below we shall dis
uss the dynami
s of the
ondensate, on
e it is formed. This issue has not been studied yet. Although we study only simpli�edmodels, the results will allow us to derive some 
on
lusions about how this pro
ess looks like on S-Fnetworks.We shall 
onsider the dynami
s on a single-inhomogeneity network introdu
ed earlier. It is a verygood 
andidate to examine how inhomogeneities in�uen
e the typi
al life-time of the 
ondensate. In orderto determine this typi
al time T̄ after whi
h the 
ondensate melts, we should �rst de�ne this quantityproperly. We have seen in the �gure 3.12 that for small homogeneous systems it was impossible to rea
h agood agreement with theoreti
al predi
tions. One of the reasons might be that, in fa
t, the 
rossing time[100℄ has not mu
h to do with jumps in the position nmax. On the other hand, the approa
h presentedthere seems to work not only for homogeneous systems so we hope to su

essfully apply it to our 
ase. Itis therefore 
onvenient to 
onsider the quantity Tmn - the average time it takes to fall from m to n ballsat the 
ondensed site, or more pre
isely, the �rst passage time from the state with m balls to the statewith n balls at that site. Tmn 
an be easily estimated from 
omputer simulations - one starts to 
ountthe time when m1 passes through m, and stops when it passes through n for the �rst time. Repeatingthis many times one gets the average time.This quantity 
an be 
ombined with a typi
al life-time T̄ using the following pi
ture: in the 
ondensedphase, the node with maximal degree takes an extensive number of balls ∆ while for the remaining nodes

mi's �u
tuate around the average number ρc ≪ ∆. We suppose these �u
tuations to be mu
h fasterthan the life-time of the 
ondensate. The 
ondensate disappears when m1 ≈ ρc. Thus T̄ ≈ Tmn where
m ≈ ∆, n ≈ ρc. The averaging should a
tually be done over all possible value ofm,n with the appropriateweight. How to 
hoose this weight and how to �nally 
al
ulate T̄ will be explained later. Now we wouldlike to fo
us on the time Tmn for given m and n.To 
al
ulate Tmn we adopt the method presented in Ref. [100℄. We assume that the 
ondensate 
an be
onsidered as slowly 
hanging in 
omparison to fast �u
tuations in the bulk. Suppose that at parti
ulartime, the 
ondensate has m balls. After one time step, the 
ondensate 
an loose one ball, gain one ballor remain inta
t. Let us denote by λm the probability that m → m + 1 and by µm that m → m − 1.Assume additionally that µ0 = 0, λM = 0 and µm≥1, λm<M are greater than zero. One 
an see that Tmnhas to ful�ll the following equation:

Tmn = 1 + λmTm+1,n + µmTm−1,n + (1 − λm − µm)Tmn, (3.107)with Tnn = 0. De�ning dm = Tmn − Tm−1,n we rewrite that equation in the form:
dmµm − λmdm+1 = 1. (3.108)With zero on the right-hand side it would have a solution dm =

∏m−1
k=1 µk/λk. In general, the solution56
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Figure 3.12: Average periods of time between jumps in nmax versus the density ρ, for homogeneousgraphs. The simulation has been performed on various graphs with N = 20 nodes and the jumping rate
u(m) = 1+3/m, the 
riti
al density ρc = 1. Cir
les: 4-regular graph, squares: 
omplete graph, diamonds:one-dimensional 
losed 
hain. Solid lines are power laws a0M

a1 �tted to data; for various graphs a1 =
3.6 . . . 4.2. The dashed 
urve giving the asymptoti
 formula (3.105) with arbitrary proportionality fa
toris far away from numeri
s.has the form dm = cm

∏m−1
k=1 µk/λk with cm ≥ 0. The equation (3.108) gives the re
ursion for cm:

cm − cm+1 =
1

µm

m−1
∏

k=1

µk/λk. (3.109)The maximal number of balls at one node is M , so it must be cM+1 = 0. With this boundary 
ondition,Eq. (3.109) has the solution:
cm =

M
∑

l=m

1

µl

l−1
∏

k=1

λk
µk
. (3.110)This leads to the following expression for Tmn:

Tmn =

m
∑

p=n+1

dp =

m
∑

p=n+1

(

p−1
∏

k=1

µk
λk

)





M
∑

l=p

1

µl

l−1
∏

q=1

λq
µq



 . (3.111)In our 
ase µm = u(m) sin
e it gives the probability that m → m − 1 at ith node. To �nd λm, let us
onsider a Master equation for the distribution of balls πi(m) at site i:
∂tπi(m) = πi(m+ 1)µm+1 + πi(m− 1)λm−1 + πi(m)(1 − µm − λm). (3.112)In the stationary state the derivative vanishes and hen
e
πi(m+ 1)µm+1 − πi(m)λm = πi(m)µm − πi(m− 1)λm−1 = 
onst. (3.113)One sees that expressions on both sides of the last equation 
annot depend on m. Inserting m = 1 wesee the 
onstant is equal to zero. From Eq. (3.113) we obtain λm:

λm = µm+1
πi(m+ 1)

πi(m)
. (3.114)Inserting µm and λm to Eq. (3.111), after some manipulations we obtain

Tmn =

m
∑

p=n+1

1

u(p)πi(p)

M
∑

l=p

πi(l). (3.115)We now apply the Eq. (3.115) to the 
ase of a single-inhomogeneity graph assuming as before u(p) = 1.Let us start with the star graph as a spe
ial degenerate 
ase and 
al
ulate the average transition times57



Tmn for the 
entral node on whi
h the 
ondensate spends almost all time. Using the formula (3.95) with
α = 1/(N − 1) for the star graph we have:

Tmn =

m
∑

p=n+1

M
∑

l=p

(N − 1)l−p
(M +N − l − 2)!(M − p)!

(M +N − p− 2)!(M − l)!
. (3.116)The terms vanish for p→ m if m≫ 1. The sum over l de
reases slowly with p be
ause it is a 
umulativedistribution for π1(l) (see Eq. (3.115)). Thus for large m the transition time is almost independent of

m. This means that the 
ondensate �u
tuates very qui
kly around some value 1 ≪ 〈m1〉 < M . Weknow from our previous 
onsiderations that 〈m1〉 ≈ M and �u
tuations are very small, so it is enoughto 
on
entrate on TMn. Changing variables we get
TMn = (N − 2)!

M−n−1
∑

r=0

r!

(N − 2 + r)!
(N − 1)r

r
∑

k=0

(N − 1)−k
(N − 2 + k)!

k!(N − 2)!
. (3.117)In the last sum we 
an set the upper limit to in�nity. We have:

TMn ≈
(

N − 1

N − 2

)N−1

(N − 2)!

M−n−1
∑

r=0

r!

(N − 2 + r)!
(N − 1)r. (3.118)The sum over r 
an be done approximately by 
hanging the variable r →M − n− 1 − r:

TMn ≈
(

N − 1

N − 2

)N

(N − 2)!(N − 1)M−n−1M − n− 1

M − n− 2

(M − n− 1)!

(M +N − n− 3)!
. (3.119)We see that, be
ause of the fa
tor (N − 1)−n, the time TMn is very sensitive to n. In �gure 3.13 it is
ompared to 
omputer simulations. This 
ompli
ated formula has a simple behavior in the limit of largesystems and n = 0. For M → ∞ and N being �xed we get an exponential growth:

TM0 ∼ (N − 1)M , (3.120)while for �xed density ρ = M/N and N → ∞ it in
reases faster than exponentially:
TM0 ∼ eρN lnN . (3.121)The approximated expressions (3.120) and (3.121) 
an be obtained very easily using a kind of Arrheniuslaw [100, 104℄, whi
h tells that the average life-time is inversely proportional to the minimal value of theballs distribution:
TM0 ∼ 1/πmin

1 , (3.122)if one thinks about the 
ondensate's melting as of tunneling through a potential barrier. In our 
ase thebarrier 1/π1(m) grows monotoni
ally with m → 0 so we observe that the 
ondensate boun
es from thewall at m = 0 rather than tunnels through it. We have πmin
1 ∼ (N − 1)−M for �xed N and large Mand thus we get Eq. (3.120), while for �xed density ρ the distribution πmin

1 falls over-exponentially whi
hresults in Eq. (3.121).Before we 
omment on the exponential behavior of times Tmn, let us 
al
ulate analogous quantitiesfor the general single-inhomogeneity graph. In the 
ondensed state the o

upation m1 �u
tuates qui
klyaround the mean 
ondensate size 〈m1〉 = ∆, with the varian
e estimated by Eq. (3.103) as ∼ N . Although
∆ is smaller than M we 
an assume that Tmn ≈ TMn for m > ∆. This is so be
ause the transition timebetween the states with high number of balls to the state with m ≈ ∆ must be small sin
e the potential
1/π1(m) de
reases with m→ ∆. Therefore, we 
an 
on
entrate again on TMn whi
h is easier to 
ompute.From Eqs. (3.95) and (3.115) we have:

TMn =
M
∑

p=n+1

M
∑

l=p

αp−l
(

M +N − l − 2

M − l

)

/

(

M +N − p− 2

M − p

)

. (3.123)Changing variables we get:
TMn =

M
∑

p=n+1

(M − p)!

(M +N − p− 2)!

M−p
∑

q=0

α−q (M +N − p− q − 2)!

(M − p− q)!
. (3.124)58
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Figure 3.13: The average life-time TM0 for a star graph with N = 10 
al
ulated from Eq. (3.119) (leftpanel) and for a single-inhomogeneity graph with N = 20, k = 4, k1 = 16 from Eq. (3.127) (right panel),
ompared to 
omputer simulations (
ir
les).The sum over q 
an be approximated in the 
ondensed state by an integral and evaluated by the saddle-point method. The saddle point q0 = α(N − 2)/(1 − α) is equal to m∗ from Eq. (3.92) and therefore all
al
ulations are almost identi
al. In this way we get:
∑

q

· · · ≈ αp × αα
N−2
1−α

−M ((N − 2)/(1 − α))!

(α(N − 2)/(1 − α))!

√

2πα(N − 2)

(1 − α)2
. (3.125)The only dependen
e on p is through the fa
tor αp. To 
al
ulate TMn it is therefore su�
ient to evaluatethe sum:

M
∑

p=n+1

αp
(M − p)!

(M +N − p− 2)!
. (3.126)Be
ause every term is proportional to 1/π1(p) from Eq. (3.95), in the 
ondensed state the fun
tion underthe sum has a minimum at the saddle point p0 ≈ m∗ ∈ (1,M). This means that the e�e
tive 
ontributionto the sum 
an be split into two terms: one for small p and one for p ≈ M . The �small-p� part 
an beevaluated like for stati
 distributions in the previous se
tion. To 
al
ulate the �large-p� part, it is su�
ientto take the last two terms, namely for p = M and p = M − 1, sin
e the large p terms de
rease qui
klywith p. The 
omplete formula for TMn is given by:

TMn ≈ αα
N−2
1−α

−M ((N − 2)/(1 − α))!

(α(N − 2)/(1 − α))!

√

2πα(N − 2)

(1 − α)2

×
[

M !

(M +N − 2)!

(

α
M +N − 2

M

)n+1(

1 − α
M +N − 2

M

)−1

+
αM−1(α(N − 1) + 1)

(N − 1)!

]

.(3.127)In Fig. 3.13 we 
ompare the theoreti
al expression for TM0 with Monte Carlo simulations. The agreementis the better, the larger M is. In the limit of large number of balls, M → ∞, while keeping N and α�xed, the life-time grows exponentially:
TM0 ∼

(

1

α

)M

=

(

k1

k

)M

. (3.128)In the limit of �xed density ρ = M/N > ρc and for M,N → ∞:
TM0 ∼ exp [N (− ln(1 − α) + ρ ln(ρ/α) − (1 + ρ) ln(1 + ρ))] . (3.129)Let us now 
omment on the exponential times observed for inhomogeneous graphs. Unlike in homogeneoussystems, where the life time grows like a power of M , in the presen
e of inhomogeneity it 
hanges tothe exponential behavior. This is typi
al for systems possessing a 
hara
teristi
 s
ale. Here it is givenby the ratio k1/k. This situation is to some extent similar to the relation between massless and massive59



intera
tions in parti
le physi
s. A two-point fun
tion for a massless �eld has a power-law de
ay and thusan in�nite range, while for a massive �eld it falls o� exponentially with the distan
e.
TM0 
al
ulated above gives us some insight into the dynami
s of the 
ondensate. Now we try to �nda formula for T̄ that is for the average time between 
onse
utive jumps of the position nmax of the nodewith maximal number of balls. We do not expe
t that the behavior of T̄ will be asymptoti
ally di�erentfrom Tmn but we would like to 
he
k if we understand well the pro
ess of melting and rebuilding the
ondensate.The main 
ontribution to the average life-time of the 
ondensate 
omes from situations when ito

upies the node with the highest degree. The probability that at a parti
ular time step the 
ondensatehas m balls is given by π1(m). The 
ondensate ends its life at a 
ertain m1 ≡ n number of balls whi
h isno bigger than at the remaining nodes, whi
h means that there is at least one node i 6= 1 with the sameor higher o

upation: mi ≥ m1. We 
all this an �event A� and denote the probability of its o

urren
eby a(n). In order to 
al
ulate the average time T̄ we have to sum over all possible m,n, weighted byappropriate probabilities:

T̄ =
1

∑

n a(n)

M
∑

m=0

M
∑

n=0

π1(m)Tmna(n), (3.130)where the �rst fa
tor gives an appropriate normalization of a(n). We have already 
al
ulated π1(m) and
Tmn for the single-inhomogeneity graph. What remains is to 
al
ulate a(n). We have to 
onsider thesubset of all 
on�gurations {m1, . . . ,mN} whi
h favor the event A. One step before A happens, we have
n+1 balls at the �rst node and no more than n balls at other nodes. The number of balls isM , thereforeat nodes 2, . . . , N there isM −n− 1 balls in total. New 
on�gurations whi
h lead to A are the following:1. n balls at the 1st node, n + 1 balls at one node among N − 1 remaining nodes, and mi ≤ n ballson ea
h of N − 2 remaining nodes, that is M − 2n− 1 in total on N − 2 nodes,2. n balls at the 1st node, n balls at one node among N − 1 nodes and mi ≤ n at ea
h of remainingnodes, with the total number of balls M − 2n on those nodes.The probability of the event A is proportional to the sum of all 
on�gurations des
ribed above:

a(n) =
1

Z(N,M)
(N − 1)

[

n
∑

m3=0

· · ·
n
∑

mN=0

δM,2n+1+m3+···+mN

+

n
∑

m3=0

· · ·
n
∑

mN =0

δM,2n+m3+···+mN

]

kn1 k
M−n. (3.131)First two fa
tors give the normalization whi
h 
orresponds to the sum over all 
on�gurations and over

N − 1 possibilities of 
hoosing the node having exa
tly n + 1 or n balls. In the square bra
ket we havenumbers of 
on�gurations with �xed amount of balls on nodes i = 3, . . . , N . The last two terms arise fromdegrees of nodes: the weight kn1 for the �rst and kM−n for the rest of nodes. Skipping the multipli
ativefa
tor and denoting the quantity in square bra
kets by b(n) we have
a(n) ∝ b(n)α−n. (3.132)The 
oe�
ient b(n) 
an be expressed through the following sum:

b(n) =

N−2
∑

r=0

(−1)r
(

N − 2

r

)[(

N +M − 4 − 2n− r(n+ 1)

M − 1 − 2n− r(n + 1)

)

+

(

N +M − 3 − 2n− r(n+ 1)

M − 2n− r(n+ 1)

)]

. (3.133)This formula is obtained by using the integral representation of dis
rete deltas in Eq. (3.131) and by
al
ulating ea
h sum over mi separately.We 
ould now write in prin
iple the formula for T̄ . It would be quite 
ompli
ated so we de
ided not topresent it here, but it 
an be evaluated numeri
ally using the theoreti
al formulas given above. In �gure3.14 we present the 
omparison between average life-times 
omputed from simulations and 
al
ulatedanalyti
ally. One 
learly sees that while M in
reases, the points approa
h the theoreti
al 
urve but aresystemati
ally slightly above it. This means that T̄ is a bit larger that predi
ted by Eq. (3.130).60
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Figure 3.14: Average life-time of the 
ondensate on a small-inhomogeneity graph with N = 20, k = 4and k1 = 8 (
ir
les), k1 = 12 (squares). Empty symbols: numeri
al estimations, solid lines: analyti
alformula (3.130). Error bars are of symbols size.3.2.4 Power-law distribution in the ZRP on inhomogeneous graphsIn previous se
tions we have noti
ed that there are many di�eren
es between zero-range pro
esses onhomogeneous and inhomogeneous networks. For a homogeneous system, one 
an have a s
ale-free dis-tribution of balls π(m) if one tunes the hop rate u(m) appropriately, while for an inhomogeneous one,distributions are in general exponential. In inhomogeneous systems the 
ondensate, if exists, resides atthe node with the largest degree for almost all time, and even if it melts, it rebuilds very fast on this node,while in homogeneous systems the 
ondensate moves from node to node. For inhomogeneous systemsthe typi
al time-s
ale for melting the 
ondensate grows exponentially with N while in homogeneous onesonly as a power of N .The power-law distributions at 
riti
ality are very interesting sin
e they are typi
al for systems withouta 
hara
teristi
 s
ale. Inhomogeneous systems have usually a typi
al s
ale introdu
ed by the fa
t, thatthe �ows of balls are di�erent between di�erent nodes. We want to address the question whether itis possible to obtain a power-law distribution of balls o

upation numbers at the 
riti
al point also forinhomogeneous networks. As we shall see, the answer to this question is in the a�rmative, but it requiresa �ne-tuning of the node-degree distribution of the underlying network. In this se
tion we shall showhow to do this. We shall also dis
uss some well-known examples of graphs in
luding Erdös-Rényi graphs,for whi
h the averaging over the ensemble of graphs leads to the parti
le distribution whi
h resembles apower-law, although it is only a �nite-size e�e
t.Unlike in previous se
tions, where we were interested in properties of the ZRP on a given, �xednetwork, we 
onsider now an ensemble of random graphs from Chapter 2. The graphs are de�ned byspe
ifying a desired degree distribution Π(k) in the thermodynami
al limit. They 
an be generated bythe Monte Carlo algorithm des
ribed in Se
. 2.1.5. In this 
ase, the probability P (k1, . . . , kN ) ≡ P (~k) ofhaving a network with a sequen
e of degrees k1, . . . , kN fa
torizes for N → ∞:
P (~k) = Π(k1) · · ·Π(kN ). (3.134)This assumption means that we 
onsider only un
orrelated networks. It is approximately ful�lled for�nite-size graphs if Π(k) falls qui
kly with k, as it results from the equivalen
e between 
anoni
al andgrand-
anoni
al partition fun
tion for networks [18℄ dis
ussed previously, sin
e in the grand-
anoni
alensemble there is no 
onstraint on the sum of degrees. The fa
torization breaks down for s
ale-freenetworks. Parti
ularly strong deviations from the fa
torization are observed for Π(k) ∼ k−γ with 2 <

γ ≤ 3, where �nite-size e�e
ts are espe
ially strong [65℄. Below we shall dis
uss networks whi
h are freeof these problems and for whi
h the fa
torization works �ne.Let us re
all the partition fun
tion for the ZRP on a given graph:
Z(N,M,~k) =

M
∑

m1,...,mN=0

δP

i mi,M

N
∏

i=1

f(mi)k
mi

i . (3.135)We are now interested in the behavior of the ZRP on a �typi
al� network, taken from the ensemble ofgraphs with distribution of degrees given by Eq. (3.134). We want to average over all possible degree61



sequen
es in the given ensemble. We thus de�ne a 
anoni
al partition fun
tion:
Z(N,L,M) =

∑

k1...kN

P (~k)Z(N,M,~k), (3.136)where L is the total number of edges in the graph whi
h, as in the 
anoni
al partition fun
tion fornetworks, is assumed to be �xed. The dependen
e on L we pull into the probability P (~k).To simplify 
al
ulations, we set u(m) = 1 as before, sin
e we expe
t the e�e
t of network inhomogeneityto be stronger than the e�e
t 
oming from the dependen
e of u(m) onm. The 
anoni
al partition fun
tion(3.136) assumes now the form:
Z(N,L,M) =

∑

~m

δP

i mi,M

N
∏

i=1

µ(mi), (3.137)where µ(m) is the mth moment of the degree distribution Π(k):
µ(m) =

∞
∑

k=1

Π(k)km. (3.138)This partition fun
tion has exa
tly the form of the partition fun
tion (3.56) for homogeneous ZRPs,whi
h we have dis
ussed before. This shows that averaging over un
orrelated networks is equivalentto 
onsidering another ZRP, for a homogeneous system. The averaging smears the inhomogeneity andrestores the symmetry with respe
t to the permutation of o

upation numbers. Instead of f̃i(m), distin
tfor di�erent nodes, we have only one f(m) ≡ µ(m), identi
al for all nodes. Moreover, we will see that ifall the moments µ(m) exist, the system is self-averaging in the sense that for large N a single networktaken from the given ensemble reprodu
es the limiting distribution of balls.After these preliminaries we are now ready to atta
k the main question, namely how to 
hoose Π(k)in order to obtain a s
ale-free distribution of balls o

upation numbers: π(m) ∼ m−b, at the 
riti
alpoint. From se
tion 3.2.2 and Eq. (3.137) we see that µ(m) should behave as m−b for large m. Thus weare looking for the degree distribution Π(k) whi
h gives the following moments (3.138):
µ(m) =

Γ(m+ 1)

Γ(m+ 1 + b)
φm. (3.139)This parti
ular form of µ(m) is well suited for analyti
al 
al
ulations, but of 
ourse we expe
t a similarbehavior for any other µ(m) having the asymptoti
 behavior ∼ m−b. The exponential term φm does not
hange the π(m) at the 
riti
al point ρc, sin
e for 
onserved number of balls it gives only an overall fa
tor

φM in Z(N,L,M). We shall use the freedom of 
hoi
e of φ to adjust the mean value of the distribution
Π(k) to the average degree k̄ = 2L/N whi
h is �xed in the ensemble with given N,L. Introdu
ing agenerating fun
tion

M(z) =
∞
∑

m=0

µ(m)
zm

m!
=

∞
∑

m=0

(zφ)m

Γ(m+ 1 + b)
, (3.140)we 
an re
over Π(k) for k > 0 as a Fourier 
oe�
ient by means of the inverse transform:

Π(k) = N 1

2π

∫ π

−π

dz eizkM(−iz), (3.141)where N gives appropriate normalization, sin
e M(−iz) is by de�nition equal to ∑k Π(k) exp(−izk).The integral in Eq. (3.141) is in general hard to 
al
ulate and express through spe
ial fun
tions like sineand 
osine integral. However, the fun
tion M(−iz) falls to zero with z → ±∞ su�
iently fast and thusfor φ ≫ 1 we 
an extend the limits of integration to ±∞. Then equation (3.141) be
omes a FourierTransform of the fun
tion M(−iz) from Eq. (3.20), introdu
ed in se
tion 3.1.2. Hen
e we know that it
an be written as an in�nite series expansion (3.22) (see also [62℄). This 
ompli
ated expression simpli�esvery mu
h in the present 
ase. Changing variables k → xφ we have
Π(xφ) =

N
2πφ

∫ ∞

−∞

dz eizx
∞
∑

m=0

(−iz)m
Γ(m+ 1 + b)

. (3.142)and we 
an now apply the results of se
tion 3.1.2. A

ording to Eq. (3.22), the last integral gives
N
φ

∞
∑

k=0

(−x)k
k!Γ(b− k)

, (3.143)62
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al
ulated from the exa
t formula (3.141) (points) and approximated one (3.144) (thi
kline), for N = 2π and b = 3. Squares: φ = 6, 
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les: φ = 30. The approximate solution diverges for
x > 1 and has to be 
ut. For 0 < x ≤ 1 the approximation is the better, the larger is φ.
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Figure 3.16: Desired (dotted line) versus real µ(m) for �nite networks (solid lines) obtained fromEqs. (3.144) and (3.138), for b = 3. Lines from left to right: φ = 5, 10, 20, 40, 80, whi
h 
orrespondsto k̄ = 1.67, 2.89, 5.4, 10.4, 20.4 from Eq. (3.146). These plots approximate also π(m) at the 
riti
al point,for in�nite networks. The parameter φ grows almost linearly with k̄.and hen
e
Π(k) =

N
φ

∞
∑

q=0

(−k/φ)q

q!Γ(b− q)
= (φ− k)b−1 N

Γ(b)φb
. (3.144)In �gure 3.15 we show Π(k) 
al
ulated from the exa
t equation (3.141) and from the approximatedone (3.144). Be
ause the probabilisti
 interpretation of Π(k) requires that it must be non-negative, thesolution (3.144) is physi
al only for k ≤ φ. So we have to set Π(k) = 0 above φ. Thus ⌊φ⌋ 
an beinterpreted as the maximal degree existing in the network. One must be, however, aware that even thetrue Π(k) 
al
ulated dire
tly from Eq. (3.141) 
an be negative above φ and that 
utting the negative partleads to some dis
repan
y between the desired µ(m) from Eq. (3.139) and that obtained when (3.144) isinserted into Eq. (3.138). Hen
e we must make sure if we really have π(m) ∼ m−b at the 
riti
al point.The answer is that for any �nite network we 
an always 
hoose φ so that the dis
repan
y between thepower-law behavior and the real µ(m) be
omes negligible. In �gure 3.16 we plot the desired fun
tion µ(m)and we 
ompare it to that 
al
ulated for various φ from Eqs. (3.138) and (3.144). As φ in
reases, the plotstend to the power law. We see that in order to get the 
orre
t ball distribution in the thermodynami
limit we have to s
ale k̄ to have limN→∞ k̄ = ∞. Su
h networks with Π(k) given by Eq. (3.144) areneither sparse nor very dense sin
e k̄ s
ales with a power of N less than one.The parameter φ is related to the average degree by the formula: k̄ =

∑φ
k=1 Π(k)k. The normalization

N must be 
hosen so that ∑φ
k=1 Π(k) = 1. The sum goes from one be
ause there 
an be no isolated63



nodes (k = 0) on the graph. When b = 2, 3, 4, one is able to �nd 
losed formulas for the normalizeddegree distribution Π(k). For instan
e, for b = 3 we have
Π(k) =

(φ− k)2

φ(φ− 1)(2φ− 1)
, (3.145)for 0 < k ≤ φ and zero for k = 0 and k > φ, with φ given by the following expression:

φ =
(

−1 + 4k̄ +
√

1 − 16k̄ + 16k̄2
)

/2. (3.146)In general, for large φ, the relation between φ and k̄ is almost linear:
k̄ =

∑φ
k=1(k − φ)b−1k
∑φ

k=1(k − φ)b−1
≈
∫ φ

0
(φ − k)kb−1dk
∫ φ

0 kb−1dk
=

φ

b+ 1
. (3.147)Be
ause φ grows with k̄, one should take graphs large enough to minimize �nite-size 
orre
tions. In otherwords, the ratio φ/N should be mu
h smaller that 1.We performed Monte Carlo simulations of the ZRP on random networks with the degree distribution(3.144) to 
he
k whether one indeed obtains a power law in the distribution of balls π(m). The simulationswere made as follows. First we generated a 
onne
ted graph from the ensemble of random graphs withthe degree distribution from Eq. (3.144), using the Monte Carlo algorithm des
ribed in previous 
hapter.The graph had no degree-degree 
orrelations, ex
ept of those introdu
ed by �nite-size e�e
ts. On thatgraph we simulated the zero-range pro
ess starting from a uniform distribution of balls. We 
olle
teda histogram of π(m) and repeated the simulation for other networks from the ensemble. In total, wegenerated over 50 networks for the given set of parameters N,M,L.The 
ru
ial point is to ensure that those graphs are 
onne
ted. The Monte Carlo algorithm presentedbefore generates in prin
iple graphs whi
h may have dis
onne
ted parts. But we know (see e.g. [1℄)that for random graphs there exists a 
riti
al average degree k̄c (a per
olation threshold), above whi
h asingle 
omponent is always formed in the limit of N → ∞. In our simulations we always 
he
ked thatwe were above k̄c and that the graph we used was 
onne
ted. We also simulated tree graphs whi
h areby de�nition 
onne
ted. For trees, however, �nite-size e�e
ts are stronger than for graphs.In �gure 3.17 we 
ompare a theoreti
al distribution at the 
riti
al point ρc = 1 for b = 3, withexperimental ones obtained by numeri
al simulations. The agreement is not perfe
t. Finite-size e�e
tsare strong. But we see an apparent power law in the distribution of balls. The 
urves shown in �gure3.16 would suggest that for k̄ = 8, the power law should 
ontinue up to m of order 100. In �gure 3.17we see that it deviates already before, probably be
ause it is not exa
tly at the 
riti
al point. Indeed, weobserve a reminis
en
e of the 
ondensation suggesting that the system is already o� the transition point.These deviations are indu
ed by the fa
t that for any �nite graph there is a 
ondensation on the mostinhomogeneous node [99℄. This gives a peak in π(m). Be
ause the 
ondensate takes an extensive numberof balls, it e�e
tively in
reases the 
riti
al density for the rest of the system, so we are slightly below ρc.In �gure 3.18 we present results for large networks, but without averaging over the ensemble. Weagain get a power law whi
h indi
ates that a self-averaging takes pla
e. As before, the experimental linedoes not agree ideally with the theoreti
al one, π(m), but the power-law behavior is 
lear.The argumentation presented above suggests that one has to �ne-tune the degree distribution inorder to obtain the s
ale-free distribution of the number of balls. What happens if one takes di�erentdistributions? We have performed the ZRP also on some other networks and surprisingly found that

π(m) seems to be also heavy-tailed. In �gure 3.19 we show results of numeri
al experiments for randomtrees [37℄ and ER random graphs. Random trees are equilibrated trees with weights p(k) = 1 and havebeen already mentioned in Se
. 2.1.4. They 
an be generated using the Monte Carlo algorithm given inSe
. 2.1.5. The degree distribution for random trees reads
Π(k) =

e−1

(k − 1)!
, (3.148)for k > 0 and Π(0) = 0. For ER graphs, Π(k) is approximately Poissonian as we know from Eq. (2.5).In �gure 3.19 we see the results of measuring π(m) on networks of size of order few hundreds. Thedistribution π(m) seems to follow a power law, in a 
ertain range. In order to 
he
k whether this rangein
reases in the large N limit, one would have to perform a systemati
 analysis for networks of growingsizes.However, here we prefer to present some theoreti
al dis
ussion of whether it 
an be a power-lawor rather some other distribution. Let us 
al
ulate the theoreti
al distribution π(m) = µ(m) at the64
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Figure 3.17: The distribution of balls in the ensemble of graphs with degree distribution Π(k) ∼ (φ−k)2.Solid line: theoreti
al π(m) ∼ m−3 at the 
riti
al point ρc = 1 and for in�nite system. Cir
les: for treeswith N = M = 400, averaged over 50 graphs, φ ≈ 6. Squares: for simple graphs with N = M = 400,
k̄ = 8, φ ≈ 30, diamonds: as before but M = 300, triangles: N = 800,M = 600.
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Figure 3.18: Demonstration of self-averaging: π(m) for a single network with degree distribution Π(k) ∼
(φ − k)2, for two di�erent sizes N = M = 5000 (thin solid line) and 10000 (dashed line) and k̄ = 16.For ea
h 
ase four networks were generated to estimate error bars. Only a few experimental points areshown for brevity. The thi
k solid line gives the asymptoti
 distribution.
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Figure 3.19: The experimental distribution of balls averaged over 200 graphs taken from the ensembleof random trees and ER graphs. Cir
les: ER graphs N = 400,M = 300, k̄ = 8, squares: as before but
N = 800,M = 450, diamonds: ER with N = M = 400, k̄ = 16, triangles: trees with N = 800,M = 300.Thi
k lines show power laws π(m) ∼ m−b with b = 4.87 (upper line) and 5.52 (lower line).65
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Figure 3.20: The distribution π(m) obtained from Eq. (3.138) with 
ut Poissonian degree distribution.The almost straight line on the log-log plot explains partially the quasi-power-law observed in numeri
alexperiments in the �gure 3.19.
riti
al point, in the thermodynami
al limit. For random trees, the generating fun
tion M(z) de�ned inEq. (3.140) has a 
losed form: M(z) = exp(z + ez), as follows from Eq. (3.148). The fun
tion µ(m) isgiven by the inverse Lapla
e transform:
µ(m) =

m!

2πi

∮

M(z)z−m−1dz, (3.149)whi
h 
an be evaluated by the saddle-point integration around z0 ≈ ln(m/ lnm):
lnµ(m) = m(lnm− ln lnm) +O(m), (3.150)and hen
e µ(m) grows over-exponentially for large m. The hop rate u(m) for an equivalent homogeneousZRP de
ays fast with m. This means that the 
ondensation happens for any density of balls, andthe bulk distribution falls faster than any power-law. Similarly, one 
an estimate that for random ERgraphs M(z) ∝ exp(k̄ez) − 1 and hen
e the leading term in lnµ(m) is also m lnm, so we again have the
ondensation.It is 
lear from the above arguments that in the limitM → ∞ one 
annot obtain power-law distributionof balls for maximally random graphs like ER graphs or random trees. If it is not a power law, how thebehavior in Fig. 3.19 
an be explained? For �nite systems, we observe that the power law goes only overone-two de
ades, so it 
an be easily 
onfused with another fun
tion. Su
h a quasi-power-law behavior ispresented in Fig. 3.20, where we have 
al
ulated π(m) for �nite-size ER graph by means of Eq. (3.138)multiplied by a fa
tor exp(−mβ). In order to mimi
 su
h �nite-size e�e
ts we have assumed that thedegree distribution Π(k) had a 
uto� at some kmax 
al
ulated from the 
ondition that in n = 200 samplesof graphs of size N = 400 it should be around one node with degree kmax: nNΠ(kmax) ≈ 1, and hen
e

kmax ≈ 22. The fa
tor β has been 
hosen to get an almost straight line on the plot. Normally this is doneby the fa
tor Z(N − 1,M −m)/Z(N,M) in the formula for distribution of balls, and in real simulationsby taking an appropriate value of M , whi
h brings the system to the 
riti
al density ρc.To summarize the dis
ussion of this subse
tion, we have shown that tuning the node-degree distribu-tion Π(k) on a random network, on whi
h the zero-range pro
ess is de�ned, one 
an obtain the powerlaw in the balls o

upation distribution π(m). This makes the system s
ale-free at the 
riti
al point, in
ontrast to the previously dis
ussed single-inhomogeneity graphs. The key point is that although degreesof nodes di�er, their distribution is so tuned that averaging over distributions of balls for nodes withdi�erent degrees gives exa
tly the power law. On every single node i, however, the distribution of balls isnot a power law, but it falls exponentially as (ki/kmax)
m. The only ex
eption is the node with maximaldegree kmax, where the 
ondensation takes pla
e.This is not the 
ase for maximal random graphs like ER graphs, where the degree distribution is
on
entrated around k̄ and the ZRP behaves like for a homogeneous system with 
onstant hop rates,having an over-exponential de
ay in π(m) for small m and a 
ondensation peak at large m. The situationis similar to that for S-F networks, where the node-degree �u
tuations are strong enough to produ
e anode of degree mu
h larger than other degrees. This node attra
ts the 
ondensate [97℄.66



Chapter 4Con
lusions and outlookComplex networks have been widely studied in re
ent years. Being a dis
ipline on the interfa
e of physi
s,
hemistry, biology, so
ial and 
omputer s
ien
es, and others, it applies a variety of methods. Most peopletry to understand observed properties of networks by introdu
ing simpli�ed models and then by making
omputer simulations in order to 
ompare results to real-world data. Some of them use a multitude ofso-
alled mean �eld approa
hes, when the quantity of interest is assumed to evolve in an averaged �eldof all intera
tions. This, however, 
an rarely allow one to examine su
h e�e
ts like phase transitions or
ondensation, and the results 
an be only qualitative. Moreover, some problems may be ill-posed whenone does not spe
ify what the word �averaged� means. In this thesis we have tried to present a 
onsistenttheory of statisti
al me
hani
s of 
omplex networks, where all problems 
an be formulated in terms ofsome averaged quantities over a well-de�ned statisti
al ensemble. The starting point of the formulationis the ensemble of Erdös-Rényi graphs, where all graphs have the same statisti
al weight. But we haveseen that ER graphs weakly reprodu
e features observed in real-world networks. Therefore, we haveassigned di�erent statisti
al weights to graphs from the same set, enhan
ing the probability of o

urren
eof graphs of a 
ertain type. For instan
e, by assigning to ea
h node a fun
tional weight p(k) depending onits degree k, we have been able to obtain any desired degree distribution, either for simple or degeneratedgraphs, for trees or graphs with 
y
les, and for 
ausal as well as for equilibrated networks. In parti
ular,we 
an reprodu
e for equilibrated networks the s
ale-free degree distribution, one of the most importantproperties of real networks. We have shown also how the approa
h via statisti
al ensemble 
an be used to
al
ulate degree-degree 
orrelations or the assortativity 
oe�
ient. We have pointed out that the samemethod 
an be used for growing networks. We have dis
ussed how to reformulate models of preferentialatta
hment in the language of network's ensembles and how to relate them to the rate-equation approa
h,whi
h is a very powerful analyti
al method.At the end of dis
ussion devoted to statisti
al ensembles of graphs we have presented a 
omparisonbetween growing and equilibrated networks. We have shown how to 
hoose fun
tional weights in bothensembles, in order to obtain the same power-law degree distributions and not to introdu
e node-node
orrelations. Then we have fo
used on some global properties like the assortativity or the diameter. Wehave found that both types of networks are disassortative but that the degree-degree 
orrelation fun
tion
ǫ(k, q) exhibits di�erent behavior for these graphs. We have observed a similar di�eren
e for the diameter,whi
h s
ales like lnN for growing unweighted networks, also for growing trees, thus indi
ating the small-world behavior, while for equilibrated unweighted trees it grows like ∼ N1/2. In other words, we haveexpli
itly shown that graphs in the two ensembles, despite having identi
al degree distributions, may have
ompletely di�erent geometri
al properties. In this parti
ular 
ase, the origin of the di�eren
es, shortlyspeaking, 
omes from the fa
t that the set of 
ausal graphs forms only a small subset of all possiblegraphs in the statisti
al ensemble, and the properties of that subset are quite di�erent to those observedas �typi
al� for the whole set.Further di�eren
es between various graphs with the same degree distribution have been dis
ussed inChapter 3. Using analyti
al and numeri
al methods we have tested theoreti
al predi
tions for the positionof the 
uto� known from the literature on the subje
t. We have en
ountered an unexpe
ted di�eren
ebetween the values of the exponent α, des
ribing the s
aling of the 
uto� kmax with the network size, for
ausal and equilibrated trees. We have pointed out that the two estimates of kmax for simple equilibratedgraphs found in the literature seem to be in
onsistent in light of results presented in this thesis. As aby-produ
t of this analysis we have developed a method of 
al
ulating the 
uto� fun
tion w(x), whi
hallows one to treat many models of growing networks in a uni�ed, standard fashion.In the se
ond part of Chapter 3 we have dis
ussed dynami
s on networks. We have studied the67



zero-range pro
ess, being just the balls-in-boxes model with a 
ertain type of lo
al dynami
s. We haveshown that for inhomogeneous systems, that is when node degrees di�er mu
h from ea
h other, stati
and dynami
al properties of the system are di�erent than those for homogeneous systems studied in thepast. For instan
e, when the inhomogeneity is strong enough, it triggers the 
ondensation on the mostinhomogeneous node. The 
riti
al density of balls, above whi
h the 
ondensation takes pla
e, dependson k1/k, where k1 is the largest degree and k is the typi
al degree in the network. In parti
ular, onS-F networks the ZRP always develops the 
ondensation. Another interesting e�e
t of inhomogeneityis a qualitative 
hange in the behavior of a typi
al life-time of 
ondensate, whi
h grows exponentiallyor faster, in 
ontrast to homogeneous systems where it grows only as a power of the system size. Wehave seen also that the e�e
t of inhomogeneity 
an be weakened for some node-degree distributions. Inparti
ular, we have found a spe
ial form of the distribution Π(k) ∼ (φ − k)b−1, for whi
h the system ofballs behaves very mu
h like on a homogeneous networks at the 
riti
al point, where the distribution ofballs o

upation number is s
ale-free: π(m) ∼ m−b.At the end, let us say a few words about possible dire
tions of further studies, and 
on
epts whi
h
an be an interesting 
ontinuation of ideas dis
ussed in this thesis. Among many interesting ideas, it is ofthe primary interest of the author to study dynami
al pro
esses taking pla
e on dynami
ally rearrangednetworks. Suppose that the ZRP 
an intera
t with the topology of the underlying network and 
hangeit while the o

upation of nodes is 
hanging. A slow 
hange in the network's stru
ture should be wellapproximated by averaging of the ZRP over an ensemble of stati
 networks as it was done in Se
. 3.2.4.If the network evolves qui
kly in 
omparison to the 
hara
teristi
 time of the ZRP, its evolution 
an beviewed as a sequen
e of rewirings as those des
ribed in se
tion devoted to Monte Carlo simulations, butwith additional weights for nodes, depending on the state of the ZRP. It is very interesting to study whathappens in between, that is when the two 
hara
teristi
 time s
ales are 
omparable.Another 
lass of problems where this kind of the two-fold evolution be
omes important is related toneural networks. If one 
ouples the evolution of neuron's states to the evolution of 
onne
tions betweenthem, one observes a self-organized 
riti
ality that produ
es a S-F network and a small-world [105℄. Thequestion is whether one 
an mimi
 this behavior using a simpler model, or to predi
t it analyti
ally inthe framework des
ribed here.There are also many other questions, for instan
e if one 
an use the approa
h via moments of thedistribution Π(k) to estimate the 
uto� in some other models of growing networks, espe
ially with degree-degree 
orrelations, or how the properties of 
ausal networks 
hange when, after a 
ertain time, we allowfor some rewirings that homogenize the network. As the example of Watts and Strogatz's small-worldmodel shows, an interesting behavior is possible. We hope to address these and other problems in thefuture investigations.
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